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Part I

Multivariable Calculus

1 Chapter 11: Parametric Equations and Polar
Coordinates

Oftentimes, we find situations where we can’t describe curves in the form
y = f(x). Curves like these fail the vertical line test that describe a func-
tion. Instead, we can describe both the x and y coordinates of this curve as
a function of a third variable t, x = f(t) and y = g(t). These are called
parametric equations and the variable t is known as the parameter. We can
call the curve they trace out a parametric curve. Certain situations where we
can use parametric curves are when we trace the path of a particle with respect
to time or the position of an object in space with respect to time, though the
parameter does not always need to denote time.

For example, if we describe x = cos(t) and y = sin(t) on the interval 0 ≤
t ≤ 2π, then we get the curve shown below:

Some curves can be expressed in the form y = F (x) by eliminating the
parameter. If we substitute the functions for our parametric equations in, we
get the expression g(t) = F (f(t)). We can differentiate this expression using
the chain rule, giving us the expression

g
′
(t) = F

′
(f(t))f

′
(t) = F

′
(x)f

′
(t)

F
′
(x) =

g
′
(t)

f ′(t)

We can now find the tangent of a parametric curve easily with
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dy

dx
=

dy
dt
dx
dt

We can derive again to find the second derivative

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

We know that the infinitesimally small change along a curve, denoted by
ds, is really just an infinitesimally small movement along the x and y direction.
Thus,

ds = idx+ jdy

ds2 = ds · ds
= (idx+ jdy) · (idx+ jdy) = dx2 + dy2

ds =
√
dx2 + dy2 =

√(
dx

dt

)2

+

(
dy

dt

)2

L =

∫ β

α

ds =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

And just like that, we have the equation of Arc Length along a parametric
curve.

We can describe another coordinate system called the polar coordinate
system. The coordinates take the form (r, θ), where r is the length that the
point is away from the coordinate and θ is the angle above the polar axis. We
can convert between cartesian and polar by seeing that we can form a triangle
with the polar axis and the line connecting the origin and the point. Thus,

x = rcosθ

y = rsinθ

We can also see that

r2 = x2 + y2

tanθ =
y

x

We know the tangent of a parametric curve. We can use that to find the
equation of a polar equation as well, with the help of the product rule.
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dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sinθ + rcosθ
dr
dθ cosθ − rsinθ

We also know that the infinitesimally small change in area of a polar curve

is simply the change in r times the average arc length: dA = dr× (rdθ+(r+dr)dθ)
2 .

Since drdθ is so small it is negligible, dA becomes rdrdθ. We can integrate this
to find

A =

∫ β

α

1

2
r2dθ

which is the area of a section under a polar equation.
We can define some conic sections as well. An ellipse is the set of points

in a plane the sum of whose distances from two fixed points is a constant. Its
equation takes the form

x2

a2
+
y2

b2
= 1

which has foci (c, 0) and c2 = a2 − b2
We can also define the hyperbola, which is the set of points in a plane the

difference of whose distances from two fixed points is a constant. Its equation
is given by

x2

a2
− y2

b2
= 1

which has focI (c, 0) and c2 = a2 + b2.
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2 Chapter 12: Infinite Sequences and Series

A sequence is a list of numbers written in a definite order. Sequences can

be described with a formula such as
[

n
n+1

]
, where the n-th term is given by

substituting in n in the formula. If the limit limn→∞ an = L exists, then we
say the sequence converges, otherwise it diverges. For example, if we have
the sequence an = n

n+1 , then we can find its limit as n approaches infinity by

lim
n→∞

n

n+ 1
= lim
n→∞

1

1 + 1
n

=
limn→∞ 1

limn→∞ 1 + limn→∞
1
n

=
1

1 + 0
= 1

If limx→∞ f(x) = L and f(n) = an, then limn→∞ an = L. This way we can
relate sequences to functions.

For example, if we have the sequence an = ln(n)
n , then we can find its limit

as it approaches infinity by recognize the related function f(x) = ln(n)
n . Thus,

we can l’Hospital rule the function to find the limit of the function, which is
equal to the limit of the sequence.

lim
x→∞

lnx

x
= lim
x→∞

1/x

1
= 0

There is also a theorem that states that if the lim−n→∞|an| = 0, then
lim−n→∞an = 0.

For example, if we have the sequence an = (−1)n
n , then we can find

lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣ = lim
n→∞

1

n
= 0

A sequence is increasing if each consequent term is greater than the last.
It is decreasing if it is smaller. It is monotonic if it is either increasing
or decreasing. If there is a number M such that an ≤ M for any value of
an, then the sequence is bounded above. If there is a number m such that
m ≤ an for any value of an, then the sequence is bounded below. If a
sequence is both bounded above and below, then it is a bounded sequence.
The monotonic sequence theorem states that every bounded and monotonic
sequence is convergent.

We can sum the terms in a sequence to obtain a series. A partial sum is es-
sentially a sum of certain numbers of a series. For example, s1 = a1, s2 = a1+a2
etc. If the sequence sn is convergent and limn→∞ exists as a real number s, then
the series sn or Σan is convergent and s is the sum of the series. Otherwise it
is divergent.
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A geometric series is an infinite series that takes the form

a+ ar + ar2 + ar3 + ...+ arn−1 = Σarn−1

We can find the sum of a geometric series as shown below

sn = a+ ar + ar2 + ...arn−1

rsn = ar + ar2 + ...+ arn−1 + arn

sn − rsn = a− arn

sn =
a(1− rn)

1− r

The sequence of this series is convergent if |r| < 1, because the rn term
approaches 0 as n approaches infinity only when |r| is less than 1. The sum
when |r| is less than 1 is then a

1−r . If |r| ≥ 1, then the series is divergent.
A specific type of series is known as the harmonic series. It is described

by Σ 1
n . The harmonic series diverges as shown below

Σ
1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
s1 = 1

s2 = 1 +
1

2

s4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

2

s8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
> 1 +

1

2
+

1

2
+

1

2
= 1 +

3

2

We can always group the fractions to be greater than a half, which will always
result in the summation of 1s, which is divergent.

If the series Σan is convergent, then limn→∞ an = 0. However, the converse
is not necessarily true. The divergence test states that if limn→∞ an 6= 0,
then the series must be divergent.

The integral test is a test where if f is a continuous, positive and decreasing
function and series an = f(n), then the series is convergent if the improper
integral

∫∞
1
f(x)dx is convergent. If the integral is divergent, then the series is

divergent.
For example, if we have the series an = 2

3x+5 , then

f(x) =
2

3x+ 5

=

∫ ∞
1

2

3x+ 5
dx = lim

b→∞

2

3
ln(3x+ 5)|∞b

=∞

Thus, both the integral of the function and the series diverge.
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If we have the series an = 1
np , otherwise known as the p-series, can be

shown to converge if p > 1 and diverge if p ≤ 1. If p¿1:∫ ∞
1

1

xp
dx =

n1−p

1− p

which only converges if p > 1.
If we suppose that an and bn are series with positive terms, then if bn is

convergent and an ≤ bn for all values of n, then an is also convergent. If bn is
divergent and an ≥ bn for all values of n, then an is also divergent. If we have
a sequence, we can compare it to a related sequence to prove convergence or
divergence. This is known as the comparison test.

For example, if we have the series an = 3n

2+5n , we can consider the series

bn = 3n

5n , which will always be greater than an. The series bn converges as it is
simply a geometric series with a ration of 3

5 , which is less than 1. Thus, since
bn converges, an must converge as well.

We can extend this and use it with limits. If an and bn are both series with
positive terms, and if limn→∞

an
bn

= c, where c > 0, then both series either
converge or diverge. This is the limit comparison test.

For example, if we have the series an =
√
n3+1

3n3+4n2+2 , then we can compare it

to the function bn =
√
n3

3n3

bn =

√
n3

3n3
=

1

3n3/2

lim
n→∞

√
n3 + 1

3n3 + 4n2 + 2
· 3n3/2 = 1

Thus, both series either converge or diverge. We know bn converges as it is a
p-series whose p > 1. Thus, an must also converge.

An alternating series is a series whose terms alternate between positive
and negative. If an alternating series is decreasing and the limit of the absolute
values of the series is 0, then the series is convergent. This is the alternating
series test.

For example, if we have the series an = (−1)n 1
n! , then we know that the

terms are decreasing. We also know that limn→∞ an = 0 because the terms in
the denominator become significantly larger than the 1 in the numerator. Thus,
the series is convergent.

If a series an is convergent and the series of its absolute values are also
convergent, then the series is absolutely convergent. If the series is conver-
gent but not absolutely convergent, then it is conditionally convergent. If

limn→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then the series is absolutely convergent. If L is greater

than 1 or infinity, then the series is divergent. If it is equal to 1, then it is
inconclusive. This is the Ratio Test.
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For example, if series an = (−1)n n
3

3n . then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (−1)n+1(n+ 1)3

3n+1
· 3n

(−1)nn3

∣∣∣∣
=

(n+ 1)3

3n+1
· 3n

n3

=
(n+ 1)3

3n3

lim
n→∞

(n+ 1)3

3n3
=

1

3

Thus, the limit is less than 1 and the series is absolutely convergent.

A Power Series is a series of the form

Σcnx
n = c0 + c1x+ c2x

2 + ...

which can be thought of as a function of x.
A series of the form

Σcn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + ...

is a power series in (x-a) or a power series centered about a. For a given
power series, the only three possibilities are that it converges when x=a, for all
x, or a positive number R for which it converges if |x − a| < R and diverges if
|x− a| > R. This R is known as the Radius of Convergence. The interval
of convergence is the interval that consists of all values of x for which the
series converges. It is important to always test the endpoints of the interval for
convergence as well.

We can represent functions as power series as well. If we have the function
ln(1− x), then

−ln(1− x) =

∫
1

1− x
dx =

∫
(1 + x+ x2 + x3 + ...)dx

= x+
x2

2
+
x3

3
+ ...+ C = Σ

xn

n
+ C

− ln(1) = C,C = 0

ln(1− x) = −Σ
xn

n
+ C

Thus, we can represent the function as an integral of the sum of a geometric
series, which we can expand and integrate term by term to find the power series
representation of a function.

If f has a power series representation about a, then its coefficients are given

by the formula cn = f(n)(a)
n! . Thus, the power series expansion of a function is
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given by the form

f(x) = Σ
f (n)(a)

n!
(x− a)n

= f(a) +
f

′
(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 + ...

This is known as the Taylor series of the function f at a. If a=0, then the
expansion is known as a Maclaurin Series.
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3 Chapter 13: Vectors and the Geometry of
Space

The beginning of this chapter concerns the definition of a vector and the op-
erations that can be done on them, such as scalar multiplication, addition,
subtraction, the dot product and the cross product. These concepts are devel-
oped in the Linear Algebra section of this review packet on chapter 1. However,
this section will explore some concepts and proofs.

The dot product is a the scalar product of two vectors, denoted by a · b,
and given by adding the product of each respective component,

a · b = a1b1 + a2b2 + ...

It can also be found with the expression

|a||b| cos θ

We can find the angles that a vector makes with the positive x, y and z axes.
These are known as direction angles and are given by finding the dot product
of the vector with each unit vector. Thus,

cosα =
a · i
|a||i|

cosβ =
a · j
|a||j|

cos γ =
a · k
|a||k|

As discussed in Chapter 1, we also can find a projection of one vector on
another. We can describe this in scalar form or vector form. The scalar pro-
jection of vector b onto vector a is simply the component of b that falls on a,
which is simply b cos θ. This can be given by

a · b
|a|

To find the vector projection of b onto a, we take the scalar projection and
multiply it by the directional unit vector along a, which is simply a

|a| . Thus, the

vector projection is given by

a · b
|a|

(
a

|a|

)
The cross product is the vector multiplication of two vectors. This oper-

ation turns out to be very useful because the resulting vector is orthogonal to
both initial vectors. If vectors a and b each have three components, then the
cross product is given by

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
9



The magnitude of the cross product is also given by the expression

|a||b| sin θ

The length of the cross product a× b is equal to the area of a parallelogram
determined by a and b. Thus, the area of the triangle created by two vectors
is simply half of the magnitude of the cross product.

Proof of law of cosines:
Let w = u− v and the angle between u and v to be θ.

u
v

w = u − v

w2 = (u− v)2

= u2 + v2 − 2u · v
= u2 + v2 − 2uv cos θ

Proof of law of sines:

w × v = u− v × v = u× v

w × u = u− v × u = u× v

|w × v| = |w × u| = |u× v|
wu sinα = uu sinβ = uv sin θ

sinβ

v
=

sinα

u
=

sin θ

w

Vectors can be utilized to describe equations of both lines and planes in
different forms. For lines, we can define a specific vector known as the normal
vector. The normal vector is the vector that is perpendicular to any vector x
parallel to the line. Thus, n · x = 0 as they are orthogonal. We can also define
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d as the direction vector being a vector parallel to the line. Thus, x is really
just a scalar multiple of d. Thus, x =pd. For situations where the line does
not pass through the origin, we must put the direction vector into standard
position first by subtracting vector p, a point on the line, from vector x. Thus,
n · (x− p) = 0 or n · x = n · p This describes the normal form of the equation
of a line.

n · (x− p) = 0

n · x = n · p

The normal vector can be found from the general form of the equation of
a line.

ax + by = c

n =

[
a
b

]
The vector form of the equation of a line simply stems from the definition

of x. The equations corresponding to the components of the vector form are
called parametric equations.

x = p + td

For example, let l be a line in R3 passing through the point P = (1,2,-1) and

parallel to the vector d =

 5
−1
3

. Then,

x = p + td

(Vector Form)xy
z

 =

 1
2
−1

+ t

 5
−1
3


(Parametric Form)

x = 1 + 5t

y = 2− t
z = −1 + 3t
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Another example. If we let 7x + 3y = 19, then we can take any arbitrary
point P = (1, 4)

n =

[
7
3

]
p =

[
1
4

]
n · x = n · p

(Normal Form)[
7
3

]
·
[
x
y

]
=

[
7
3

]
·
[
1
4

]
The same derivations can be done with the equation of a plane as well. If

we let ax+ by+ cz = d describe the general form of a plane and p be a specific
point on the plane, then the normal form of the equation of a plane is given by

n =

ab
c


n · (x− p) = 0

n · x = n · p

Because of the second dimension, two direction vectors that are not parallel
to each other are required to describe the vector form of a plane. If we let u
and v be those direction vectors, then the vector form of a plane is given by
the following. Again, the parametric equations are simply the equations of the
corresponding components.

x = p + su + tv

For example, if we have a plane that contains the point P = (5,7,3) and

normal vector n =

1
2
3

, then
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n · p = 1(5) + 2(7) + 3(3) = 5 + 14 + 9 = 28

n · x = x+ 2y + 3z = 28

We can find two other points on the plane to get two direction vectors.

Q = (3, 2, 7) and R = (2, 1, 8)

u =

3− 5
2− 7
7− 3

 =

−2
−5
4


v =

2− 5
1− 7
8− 3

 =

−3
−8
5


x = p + su + tvxy
z

 =

5
7
3

+ s

−2
−5
4

+ t

−3
−8
5



We can define the cylindrical coordinate system as a three dimensional
space where points are represented by (r, θ, z), where r is the magnitude of the
length from the origin to the point, θ is the angle above the positive x-axis
and z is the distance from the point to the xy-plane. We can use the following
to convert between the cylindrical coordinate system and cartesian coordinate
system.
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x = r cos θ

y = r sin θ

z = z

and to convert back, we can use

r2 = x2 + y2

tan θ =
y

x
z = z

The spherical coordinate system is another coordinate system that is
useful for when we describe an object that is symmetrical about a point. Points
are described by (ρ, θ, φ), where ρ is the length between origin and the point, θ
is the angle above the positive x axis, and φ is the angle between the z axis and
the point.

We can use the following to convert from spherical to cartesian

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

The distance formula shows us that

ρ2 = x2 + y2 + z2
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4 Chapter 14: Vector Functions

A vector function is a function is a set of real numbers and whose range is
a set of vectors. The components are determined with component functions
and the vector function can be represented as such

r(t) =< f(t), g(t), h(t) >

We can find the derivative of a vector function r
′

by taking the derivative of
each of the component functions. By definition, it is the same as taking the
derivative of a regular curve, where you find the secant line between two points
and take the limit as the interval approaches 0. Doing this with a vector function
gives you a vector that lies on the tangent line. Thus, the derivative of a vector
function is the tangent vector. The unit tangent vector is given by:

T(t) =
r
′
(t)

|r′(t)|

For example, if r(t) = (1 + t3)i + te−tj + sin 2tk, then its derivative is

r
′
(t) = 3t2i + (1− t)e−tj + 2 cos 2tk

and the unit tangent vector at t=0 is

r(0) = i

r
′
(0) = j + 2k

T(0) =
j + 2k√

1 + 4
=

j√
5

+
2k√

5

The definite integral of a vector function works in a similar manner, by
taking the definite integral of each of the component function. The result is still
a vector.

When the unit tangent vector of a vector function changes slowly, the curve
is fairly straight, but when the tangent vector changes direction quickly, the
curve bends more sharply. Thus, we can define the curvature of a curve to be
the rate of change of the unit tangent vector with respect to arc length.

κ =

∣∣∣∣dTds
∣∣∣∣

We can find curvature with respect to the parameter t instead of arc length by

15



using chain rule and dividing

dT

dt
=
dT

ds

ds

dt
dT

ds
=
dT/dt

ds/dt

κ =

∣∣∣∣dTds
∣∣∣∣ =

∣∣∣∣dT/dtds/dt

∣∣∣∣
=

∣∣∣∣∣T
′
(t)

r′(t)

∣∣∣∣∣
We know that T

′
(t) must be orthogonal to T(t), thus their dot product is

0. We can define the unit Normal vector as

N(t) =
T

′
(t)

|T′(t)|

Geometrically, this is a unit vector pointing to the ”center” of a curve, perpen-
dicular to the tangent vector. The Binormal vector is the cross product of
both the tangent and normal vector, resulting in a vector that is perpendicular
to both vectors, usually pointing in or out of the page on a space curve. It is
given by

B(t) = T(t)×N(t)

Visually, all these vectors look like this on a space curve
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We can derive another expression for curvature as well.

T(t) =
r
′
(t)

|r′(t)|
r
′
(t) = T(t)|r

′
(t)|

v = Tv

dv

dt
=
d(Tv)

dt
= T

′
v + Tv

′

r
′
× r

′′
= v × v

′
= v × (T

′
v + Tv

′
)

v ×T = 0

r
′
× r

′′
= vv ×T

′

|r′ × r
′′ |

|r3|
=
|v ×T

′ |
v2

=
|vT×N|T′ ||

v2

BT×N,|B| = 1

=
v|T′ |
v2

=
|T′ |
v

= κ

Thus,

κ =
|r′ × r

′′ |
|r3|

If we represent r(t) as the vector function for the path of the particle, the its
derivative is the velocity vector and its second derivative is the acceleration vec-
tor function, similar to regular functions. We can resolve acceleration into two
components, one in the direction of the tangent and the other in the direction
of the normal (centripetal).

T =
r
′

r′ =
v

v
v = vT

a = v
′

= v
′
T + vT

′

κ =
|T′ |
|r′ |

=
|T′ |
v

|T
′
| = κv

N =
T

′

|T′ |
T

′
= |T

′
|N = κvN

a = v
′

= v
′
T + κv2N

17



We can find the unit vectors of the coordinate systems defined in the last
chapter in terms of the unit vectors of the cartesian coordinate system. We can
start with the conversions between cartesian and cylindrical systems.

x = r cos θ, y = r sin θ, z = z

dx = cos θdr − r sin θdθ

dy = sin θdr + cos θdθ

dz = dz

ds = dxi + dyj + dzk

= (cos θdr − r sin θdθ)i + (sin θdr + cos θdθ)j + dzk

= (i cos θ + j sin θ)dr + (−i sin θ + j cos θ)rdθ + (k)dz

= erdr + eθrdθ + ekdz

er = i cos θ + j sin θ

eθ = −i sin θ + j cos θ

ek = k

We can do the same exercise with spherical coordinates

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

dx = sinφ cos θdρ− ρ sinφ sin θdθ + ρ cosφ cos θdφ

dy = sinφ sin θdρ− ρ sinφ cos θdθ + ρ cosφ sin θdφ

dz = cosφdρ− ρ sinφdφ

ds = dxi + dyj + dzk

ds = (sinφ cos θdρ− ρ sinφ sin θdθ + ρ cosφ cos θdφ)i

+ (sinφ sin θdρ− ρ sinφ cos θdθ + ρ cosφ sin θdφ)j

+ (cosφdρ− ρ sinφdφ)k

ds = (i sinφ cos θ + j sinφ sin θ + k cosφ)dρ

+ (i cosφ cos θ + j cosφ sin θ − k sinφ)ρdφ

+ (−i sin θ + j cos θ)ρ sinφdθ

eρ = i sinφ cos θ + j sinφ sin θ + k cosφ

eφ = i cosφ cos θ + j cosφ sin θ − k sinφ

eθ = −i sin θ + j cos θ

18



5 Chapter 15: Partial Derivatives

There are many scenarios where a function would depend on not only one vari-
able, but two variables. We can think of the temperature as a function of two
variables, the x and y position of the space we are considering. Or the volume as
a function of both the radius and the height of a cylinder. Thus, the function
of two variables is simply a rule that assigns a real ordered pair (x,y) in a set
D a unique real number denoted by f(x, y). Both x and y are the independent
variables and f(x, y), or z, is the dependent variable.

For example, if we wanted to find the domain and range of the multivariable
function

f(x, y) =

√
x+ y + 1

x− 1

we can see that there is no expression for f if the denominator is 0 or the quantity
under the square root is nonnegative. Thus,

D = (x, y)|x+ y + 1 ≥ 0, x 6= 1

The level curves of a function of two variables are the curves with equations
f(x, y) = k, where k i s a constant.

We can translate the notion of the limit to a multivariable function. We say
that the limit of f(x, y) as (x, y) approaches (a, b) is denoted by

lim
(x,y)→(a,b)

f(x, y) = L

If we find the limit along one path to be a different value than the limit along
another path, then the limit does not exist. For example, if we have the function

f(x, y) =
x2 − y2

x2 + y2

then the limit as we approach (0, 0) from the x-axis is simply when y=0, then

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
=
x2

x2
= 1

whereas if we take the limit from the y-axis when x=0, then

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
=
−y2

y2
= −1

Since the values are not equal, the limit as the function approaches (0, 0) does
not exist.

We can use the squeeze theorem to our advantage when finding limits of
functions. If we define a function as

xy√
x2 + y2
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then the limit of this function as it approaches zero can be found with the
squeeze theorem. We know that

0 ≤

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ ≤ |x|, |y|
lim
x→0
|x| = 0

lim
y→0
|y| = 0

Thus, the limit as the function approaches (0, 0) is also 0.
The notion of the derivative carries to multivariable functions as well. How-

ever, the derivative at a certain point can be one of many tangents. For example,
if there is a function of both x and y, then we can take the derivative of that
function with respect to x or with respect to y. This is known as the partial
derivative. It can be defined by

fx(x, y) =
f(x+ h, y)− f(x, y)

h

fy(x, y) =
f(x, y + h)− f(x, y)

h

The partial derivative is also denoted by fx, ∂f
∂x , or ∂

∂xf(x, y)
To find fx, we hold y as a constant and differentiate with respect to x. To

find fy, we hold y as a constant and differentiate with respect to y.
For example, if f(x, y) = x3 + x2y3 − 2y2, then

fx = 3x2 + 2xy3

fy = 3y2x2 − 4y

We can see that implicit differentiation works in a similar manner if z is
defined as a function of x and y. If x3 + y3 + z3 + 6xyz = 1, and we differentiate
with respect to x, then

3x2 + 3z2
∂z

∂x
+ 6yz + 6xy

∂z

∂x
= 0

∂z

∂x
= −x

2 + 2yz

z2 + 2xy

We can form partial differential equations to express physical laws. For
example, the partial differential equation

∂2u

∂x2
+
∂2u

∂y2
= 0

is called the Laplace’s Equation. Its solutions are called the harmonic func-
tions. Another differential equation is

∂2u

∂t2
= a2

∂2u

∂x2

20



is called the wave equation
We can use what we know to find the tangent plane of a point on a

multivariable curve. The tangent plane on a point P (xo, yo, zo) is

z − zo = fx(xo, yo)(x− xo) + fy(xo, yo)(y − yo)

We can find differentials in a similar manner. In a regular function, the
differential dx is the independent variable representing an infinitesimally small
increment or decrement in the x direction. The differential dy is given by dy =
f

′
(x)dx. The differential dz in a multivariable function is given by

dz = fx(x, y)dx+ fy(x, y)dy =
∂z

∂x
dx+

∂z

∂y
dy

We can prove the tangent plane expression with differentials

dx = x− xo
dy = y − yo
dz = z − zo

dz =
∂z

∂x
dx+

∂z

∂y
dy

z − zo = fx(xo, yo)(x− xo) + fy(xo, yo)(y − yo)

We can translate the notion of the chain rule to multivariable functions
as well. Suppose that z = f(x, y) is a differentiable function of x and y and
x = g(t) and y = h(t). Thus, z is also a differentiable function of t and its
derivative is given by

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

However, this only holds true if x and y are differentiable functions of 1
variable. If we assume that u is a differentiable function of n variables and each
of the n variables is a differentiable function of m variables, then the general
form of the chain rule is

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ ...+
∂u

∂xn

∂xn
∂ti

For example, if w = f(x, y, z, t) and x = x(u, v), y = y(u, v), z = z(u, v),
t = t(u, v), then

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂z

∂z

∂u
+
∂w

∂t

∂t

∂u

∂w

∂v
=
∂w

∂x

∂x

∂v
+
∂w

∂y

∂y

∂v
+
∂w

∂z

∂z

∂v
+
∂w

∂t

∂t

∂v

We know that the partial derivative with respect to x gives us the rate of
change in the x- direction, along the unit vector i. The same is true with the
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partial derivative with respect to the y direction, along unit vector j. If we want
to find the rate of change along any unit vector u =< a, b >, then we use the
directional derivative of the function

Duf(xo, yo) = lim
h→0

f(xo + ha, yo + hb)− f(xo, yo)

h

The directional derivative is also given by

Duf(x, y) = fx(x, y)a+ fy(x, y)b

Duf(x, y) =< fx(x, y), fy(x, y) > ·u

The first vector of the dot product is known as the gradient of f and is
denoted by ∇f , which is read as del f. More formally, del f is given by

∇f(x, y) =< fx(x, y), fy(x, y) >=
∂f

∂x
i +

∂f

∂y
j

Duf(x, y) = ∇f(x, y) · u

The maximum value of the directional derivative is given by |∇f(x)|.
We can utilize the Second Derivatives Test to test if a point is a lo-

cal maximum or a local minimum on a multivariable function. Suppose
fx(a, b) = 0andfy(a, b) = 0, denoting that they are critical points. Let

D = fxx(a, b)fyy(a, b)− [fxy(a, b)]2

If D > 0 and fxx > 0, then f(a, b) is a local minimum. If D > 0 and fxx < 0,
then f(a, b) is a local maximum. If D < 0, then f(a, b) is neither a local
maximum or minimum. This is known as a saddle point and it is where the
graph of f crosses its tangent plane.

We can use the idea of a lagrange multiplier to maximize or minimize
a general function if it’s subject to a constraining function. If the function is
f(x, y, z) and it is subject to a constraint g(x, y, z) = k, we find all the values
of x, y, z and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

We solve for the solutions of fx = λgx, fy = λgy, fz = λgz. The maximum
solution is the maximum solution and the minimum solution is the minimum
solution.

For example, if a rectangular box of square area 12m2 is to be made without
a square lid and we need to find the maximum value of such a box, then we can
use lagrange multipliers to find the maximum solution. We let

V = xyz

subject to the constraint

g(x, y, z) = 2xz + 2yz + xy = 12
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We look for values of x,y,z and λ such that ∇V = λg. This gives the equations
Vx = λgx, Vy = λgy, Vz = λgz and 2xz + 2yz + xy = 12, which become

yz = λ(2z + y)

xz = λ(2z + x)

xy = λ(2x+ 2y)

2xz + 2yz + xy = 12

We solve the system of equations to get

2xz + xy = 2yz + xy

2yz + xy = 2xz + 2yz

x =y = 2z

4z2+4z2 + 4z2 = 12

z = 1, x = 2, x = 2
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6 Chapter 16: Multiple Integrals

We can think of the area under a multivariable function in the same way we
think of the area under a curve. We can use Riemann Sums in a similar manner,
except we think of the ”volume” under the curve as a summation of rectangular
prisms of equal area. The domain of the multivariable function is simply the
total area of these ”Riemann Prisms”. Because of the varying heights of the
multivariable function, we divide the domain into subrectangles of equal area.
Finding the height of each respective subrectangle and multiplying it by the area
will result in the volume of that subprism. We add the volumes of each subprism
to get a volume under a curve. The height in question is simply the function of
the two points anywhere within that subrectangle. Thus, the double integral
of f over the rectangle R is∫ ∫

R

f(x, y)dA = lim
m,n→∞

Σmi=1Σnj=1f(xij , yij)∆A

Thus, the volume of the solid that lies above the rectangle R and below the
surface is

V =

∫ ∫
R

f(x, y)dA

As for the sample point used in the Riemann sum, we can use any of the single
variable counterparts - midpoint, trapezoidal etc. For example, if we want to
estimate the value of ∫ ∫

sin(x+ y)dA

using a riemann sum with m=n=2 and a rectangle of dimension R = [0, π] ×
[0, π], then we simply split up our rectangle into subrectangles, each side com-
posed of 2 smaller rectangles. We find the area of each rectangle to be π2/4.
Our sample points using the midpoint rule are

(
π

4
,
π

4
), (

π

4
,

3π

4
), (

3π

4
,
π

4
), (

3π

4
,

3π

4
)

We can then estimate the volume of the solid under the curve to be the sum of
the function of our sample points times the area of each subrectangle:

[sin(
π

4
+
π

4
) + sin(

π

4
+

3π

4
) + sin(

3π

4
+
π

4
) + sin(

3π

4
+

3π

4
)]× π2

4
= 0

Note that the area below the xy plane is considered negative volume and can
cancel out the volume above the xy plane.

To compute an iterated integral, we can work from the inside out. If we
are computing an expression ∫ d

c

∫ b

a

f(x, y)dxdy
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We can compute ∫ d

c

[∫ b

a

f(x, y)dx

]
dy

holding y constant. Then, we compute the outer integral holding x constant.
For example if we have the expression∫ 3

0

∫ 2

1

(x2y)dydx

=

∫ 3

0

[
x2
y2

2

]
dx

=

∫ 3

0

[
3x2

2

]
dx

=

[
x3

2

]
=

27

2

The order in which you integrate the iterated integral does not matter as long as
f is bounded on R and the iterated integrals exist. This is Fubini’s theorem.
The region we find our volume over does not always have to be rectangles. If
the region we’re finding the volume above is a region D subtended by the two
continuous functions of x, then the region is known as a type I region and its
volume is found as follows∫ ∫

D

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx

D = [(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)]

If the region D is subtended by two continuous functions of y instead, then the
region is a type II region and its volume is given by∫ ∫

D

f(x, y)dA =

∫ d

c

∫ h2(x)

h1(x)

f(x, y)dxdy

D = [(x, y)|c ≤ y ≤ d, h1(x) ≤ x ≤ h2(x)]

We can find the volume over circular regions easier if we use a change in area
in polar coordinates instead of cartesian. To change the function from cartesian
to polar, we simply substitute r cos θ for x and r sin θ for y. The change in
area must also be converted in terms of polar coordinates since dxdy no longer
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represents the change in area in polar coordinates.

We see that the change in area can be thought of the area of a trapezoid with
height dr, top side rdθ and bottom side (r + dr)dθ = rdθ. Note that drdθ is so
small it’s insignificant. The change in area is then rdrdθ. Thus,∫ ∫

R

f(x, y)dA =

∫ β

α

∫ b

a

f(rcos(θ), rsin(θ))rdrdθ

Previously, we could only find the center of mass or moment of inertias of
a surface with a constant density with a single integral. Now, with double
integrals, we can find the same with laminas of variable density in a 3D plane.
If the density is a function of two variables, x and y, then ρ(x, y) is the mass
over unit area. To find this, we can divide the lamina into subrectangles and
take the limit of the change in mass over the change in area as the dimensions
of that subrectangle approach 0. Thus, the change in mass of one subrectangle
is the density at a point within that subrectangle times the change in area. If
we add up all of these change in masses, we get the mass of the entire lamina.

m =

∫ ∫
ρ(x, y)dA

The moment about the x axis is simply the mass times the distance to the x
axis, which is the y value. The moment about the y axis is the same times
x.

Mx =

∫ ∫
yρ(x, y)dA

My =

∫ ∫
xρ(x, y)dA
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The center of mass, having coordinates (xcenter, ycenter), is defined so that
mxcenter = My and mycenter = Mx

xcenter =
My

m
=

1

m

∫ ∫
xρ(x, y)dA

ycenter =
Mx

m
=

1

m

∫ ∫
yρ(x, y)dA

The moment of inertia is defined as mr2. In the case with a lamina of a
variable density the moment of inertia about the x axis is

Ix =

∫ ∫
y2ρ(x, y)dA

and the moment of inertia about the y axis is

Iy =

∫ ∫
x2ρ(x, y)dA

The moment of inertia about the origin Io is simple the sum of Ix and Iy.
We know that the infinitesimally small change in length in cartesian coordi-

nates is

ds = dxi + dyj + dzk

To find the surface area of a curve, we can divide the region under the curve
into subrectangles. If we take a sample point in any one of these subrectangles
and find the point on the curve that corresponds to this sample point, then
we can find the tangent plane at this point on the curve. We approximate the
area of this tangent plane to the surface area of the small section on the curve.
If we add all of these areas, we can get the equation of the surface area of a
multivariable curve.
To find the area of the extremely small tangent plane, we can find the magnitude
of the cross product between the two vectors that compose the tangent plane.
The vectors that compose the tangent plane at that point is simply the partial
derivative with respect to x times the change in x and the partial derivative
with respect to y times the change in y.

dS =

(
∂s

∂x
dx

)
×
(
∂s

∂y
dy

)
=

(
idx+ k

∂z

∂x
dx

)
×
(

jdy + k
∂z

∂y
dy

)
=

(
i + k

∂z

∂x

)
×
(

j + k
∂z

∂y

)
dxdy

=

(
k− j

∂z

∂y
− i

∂z

∂x

)
dxdy

√
dS · dS =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

27



Just like there are single integrals for a function of one variable and double
integrals for functions of two variables, there exists triple integrals for func-
tions of three variables, which becomes harder to visualize. However, the same
concepts are used. We can think the shape as a 3D plotted over a region D
on the xy plane. To find the volume of this shape, we can divide the shape
into subprisms and utilize a triple Riemann Sum, adding up all of the little
subprisms, in order to find the volume. Thus, using the same concept,∫ ∫ ∫

f(x, y, z)dV

where dV is the infinitesimally small change in volume that would depend on
the coordinate system being used.
In the cartesian system, if the solid region is subtended between two functions
in the x direction and two functions in the y direction, then the volume of the
solid becomes∫ ∫ ∫

f(x, y, z)dV =

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)

f(x, y, z)dzdydx

To find the same formula in the cylindrical coordinate plane, we figure out
dV in that plane in the same way we found dA previously. dV is simply the
same as dA multiplied by the change in the z direction. Thus, dV = rdzdrdθ.
Thus, in cylindrical coordinates the formula becomes∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(rcosθ,rsinθ)

u1(rcosθ,rsinθ)

f(rcosθ, rsinθ, z)rdzdrdθ

To convert the formula into spherical coordinates, we must find the dV in
that system, which looks a little bit harder. We can visualize the change in
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volume as below

The little spherical wedge at the end is composed of three dimensions, dr,
rdθ, and rsinθdφ. The third element can be thought of a leg of magnitude rsinθ
moving through an angle φ, creating an arc. Thus, our dv is r2 sin θdrdθdφ.
Thus, the formula becomes∫ d

c

∫ β

α

∫ b

a

f(ρsinφcosθ, ρsinφsinθ, ρcosφ)ρ2sinφdρdφdθ

For any general change of variable transformation, we can find the extraneous
terms in addition to the change in each direction using the jacobian. The
jacobian of the transformation given by x = g(u, v) and y = h(u, v) is

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Thus, the change in variables from cartesian to cylindrical can be thought
of ∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(rcosθ,rsinθ)

u1(rcosθ,rsinθ)

f(rcosθ, rsinθ, z)Jdzdrdθ

where J is the jacobian of the transformation, which in this case turns out to
be r.
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The change in variables from cartesian to spherical can be thought of∫ d

c

∫ β

α

∫ b

a

f(ρsinφcosθ, ρsinφsinθ, ρcosφ)Jdρdφdθ

where J is the jacobian of the transformation, which in this case turns out to
be ρ2sinφ.
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7 Chapter 17: Vector Calculus

A vector field is a function that assigns to each point (x, y) in D to a two
dimensional vector F(x,y). For example, a vector field can take the form

F (x, y) = −yi + xj

and graphically, this looks like this

Vector fields like these can be used to represent any phenomena, ranging from
an electric field from a charge to wind speeds in a 3d plane. The del operator
we defined earlier is actually a vector field known as the gradient vector field
because it takes the form

∇f(x, y) = fx(x, y)i + fu(x, y)j

We can define another type of integral. Instead of integrating over an interval
[a, b], we can integrate over a curve C. This is known as a line integral. We
can figure out the line integral by dividing the ”curtain” under the curve into
subrectanges. This looks like small sub arcs on the xy plane. If we take a sample
point, representing the height, and multiply it by the change in length, we get
the area of one small ”subcurtain”. We can add up all of these to get the area
of the ”curtain” that a curve traverses through. It is given by∫

C

f(x, y)ds

If the curve is parametrized, then the change in length can be thought of as

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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and the line integral becomes∫
C

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Instead of finding the line integral with respect to the arc length, we can
also find the line integral with respect to x and y. They are simply found with
the same process, except we multiply the sample point times the change in the
x or y direction ∫

C

f(x, y)dx =

∫ a

b

f(x(t), y(t))x
′
(t)dt∫

C

f(x, y)dy =

∫ a

b

f(x(t), y(t))y
′
(t)dt

If there exists a continuous vector field defined on a smooth curve C given
by the vector function r(t), then the line integral of F along C is given by∫

C

F · dr =

∫ b

a

F(r(t)) · r
′
(t)dt =

∫
C

F · Tds

The fundamental theorem for line integrals states that∫
C

∇f · dr = f(r(b))− f(r(a))

We know this to be true because∫
C

∇f · dr

=

∫ (
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
=

∫
(df) = f(b)− f(a)

If we assume that a vector field is continuous on an open connected region
exists, and if

∫
C
F · dr is independent of path, then F is a conservative vector,

and there exists a function f such that ∇f = F
To determine if a vector field F (x, y) = P (x, y)i +Q(x, y)j is conservativem

then

∂P

∂y
=
∂Q

∂x

Green’s Theorem gives the relationship between a line integral around a
simple closed curve C and a double integral over the plane region D bounded
by C. ∫

C

F · dr =

∫
C

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA
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We can prove it in its vector form∮
F · nds =

∫
F · nds

dt
dt

=

∫
(Fxnx + Fyny)

ds

dt
dt

=

∫
(Fx

dy
dt − Fy

dx
dt )

ds/dt

ds

dt
dt

=

∫
(Fxdy − Fydx) =

∫∫
(
∂Fx
∂x

dxdy − ∂Fy
∂y

dydx)

=

∫∫
(
∂Fx
∂x

dxdy +
∂Fy
∂y

dxdy)

=

∫∫
∇ · FdA

We can define two operations that can be performed on vector fields that
are applicable in many different concepts. If F = P i +Qj +Rk is a vector field,
then the curl of F is defined by

curlF = ∇× F

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
If f is a function of three variables that has continuous second order partial

derivatives, then

curl(∇f) = ∇× (∇f)

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣
=

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
i +

(
∂2f

∂z∂x
− ∂2f

∂x∂z

)
j +

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
k

= 0

The divergence of F is given by

divF =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

= ∇ · F

Stokes’ Theorem is the higher dimension version of Green’s Theorem.
Instead of considering a plane region D, we can think of a space curve S. The
relation between the surface integral over a surface S to a line integral around
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the boundary curve of S is shown below∫
C

F · dr =

∫∫
S

curlF · dS

Proof:∫
C

F · dr

=

∫
(Fxdx+ Fydy + Fzdz)

=

∫
(

∫
dFxdx+

∫
dFydy +

∫
dFzdz)

=

∫
(

∫
(
∂Fx
∂y

dy +
∂Fx
∂z

dz)dx

+

∫
(
∂Fy
∂x

dx+
∂Fy
∂z

dz)dy +

∫
(
∂Fz
∂x

dx+
∂Fz
∂y

dy)dz)

=

∫
(

∫
(−∂Fx

∂y
dxdy +

∂Fx
∂z

dzdx)

+

∫
(
∂Fy
∂x

dxdy − ∂Fy
∂z

dydz) +

∫
(−∂Fz

∂x
dzdx+

∂Fz
∂y

dydz))

=

∫
(

∫
(
∂Fz
∂y
− ∂Fy

∂z
)dydz

+

∫
(
∂Fx
∂z
− ∂Fz

∂x
)dzdx+

∫
(
∂Fy
∂x

+
∂Fx
∂y

)dxdy)

=

∫
(

∫
(∇× F )xdAx +

∫
(∇× F )ydAy +

∫
(∇× F )zdAz)

=

∫∫
(∇× F ) · dA

If we let E be a simple solid region and S the boundary surface of E and F
a vector field whose component functions have partial derivatives on a region
that contains E, then ∫∫

S

F · dS =

∫∫∫
E

divFdV

This is Divergence Theorem.
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Proof: ∫∫
S

F · dS

=

∫∫
(FxdAx + FydAy + FzdAz)

=

∫∫
(Fxdydz + Fydxdz + Fzdxdy)

=

∫∫∫
(
∂Fx
∂x

dxdydz +
∂Fy
∂y

dydzdx+
∂Fz
∂z

dzdxdy)

=

∫∫∫
(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)dxdydz

=

∫∫∫
∇ · FdA
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8 Chapter 18: Second Order Differential Equa-
tions

A Second order linear differential equation has the form

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = G(x)

The system is termed homogenous if G(x)=0.
If we know that two solutions y1(x) and y2(x) exist, then the linear combination
y = c1y1(x)+c2y2(x) is also a solution to the homogenous linear equation Proof:

Py
′′

1 +Qy
′

1 +Ry1 = 0

Py
′′

2 +Qy
′

2 +Ry2 = 0

Py
′′

+Qy
′
+R = 0

= P (c1y1 + c2y2)
′′

+Q(c1y1 + c2y2)
′
+R(c1y1 + c2y2)

= P (c1y
′′

1 + c2y
′′

2 ) +Q(c1y
′

1 + c2y
′

2) +R(c1y1 + c2y2)

= c1[Py
′′

1 +Qy
′

1 +Ry1] + c2[Py
′′

2 +Qy
′

2 +Ry2]

= c1(0) + c2(0) = 0

Thus, if we know two linearly independent solution, we know every solution.
Thus we need to find a solution that satisfies the auxiliary equation

ay
′′

+ by
′
+ cy = 0

The function y = erx has a special property because its derivative is just a
constant multiple of itself. Thus,

ar2erx + brerx + cerx = 0

(ar2 + br + c)erx = 0

Thus, y = erx is a solution if r is a root of the characteristic equation

ar2 + br + c = 0

In the case that the discriminant of this auxiliary equation is positive, or b2 −
4ac > 0, then the roots r1 and r2 are real and distinct and the general solution
of the differential equation takes the form

y = c1e
r1x + c2e

r1x

For example, if we have the equation

3
d2y

dx2
+
dy

dx
− y = 0
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then the auxiliary equation becomes

3r2 + r − 1 = 0

r =
−1±

√
13

6

If the discriminant is 0, then the roots are real and equal. The auxiliary becomes

r =
−b
2a

2ar + b = 0

We know that y1 = erx. y2 = xerx is also a solution. Since they are both
linearly independent, the general solution of a differential equation with one
real root is

y = c1e
rx + c2xe

rx

If the discriminant of the auxiliary equation is less than 0, then the roots are
complex numbers. They take the form

r1 = α+ iβ

r2 = α− iβ

We can use Euler’s equation to find a solution

eiθ = cosθ + isinθ

We then have

y = C1e
r1x + C2e

r2x = C1e
(α+iβ)x + C2e

(α−iβ)x

= C1e
αx(cosβx+ isinβx) + C2e

αx(cosβx− isinβx)

= eαx(c1cosβx+ c2sinβx)

Thus, the general form of the solution is

eαx(c1cosβx+ c2sinβx)

We can now find a solution to a nonhomogenous equation. If we have a
nonhomogenous equation, then the related homogenous equation is known as the
complementary equation. Thus, the general solution of the nonhomogeneous
equation is

y(x) = yp(x) + yc(x)
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where yp is a particular solution to the nonhomogenous equation and yc is the
general solution of the complementary.
For example, if we have the equation y

′′
+ y

′ − 2y = x2, then we start solving
by first finding the complementary equation to be

y
′′

+ y
′
− 2y = 0

r2 + r − 2 = (r − 1)(r + 2) = 0

r = 1,−2

yc = c1e
x + c2e

−2x

To find the particular equation, we know that

yp = Ax2 +Bx+ C

y
′

p = 2Ax+B

y
′′

p = 2A

−2Ax2 + (2A− 2B)x+ (2A+B − 2C) = x2

A = −1

2

B = −1

2

C = −3

4

yp = −1

2
x2 − 1

2
x− 3

4

Therefore, the general solution is

y = yc + yp = c1e
x + c2e

−2x − 1

2
x2 − 1

2
x− 3

4
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Part II

Linear Algebra

9 Chapter 1: Vectors

Vectors are quantities with both a magnitude and a direction, whereas scalars
are quantities with only a magnitude. For example, 10 m/s West is a vector,
while 10 m/s is a scalar. Geometrically, vectors can be denoted with an arrow,
with the length of the arrow being proportional to its magnitude. The vector
from point A to point B is denoted by AB where point A is the initial point
and point B is the terminal point. Column vectors are often used to represent
vectors conveniently. For example,

a =

[
−2
3

]
In this case, -2 and 3 are known as the components of the vector a. Graph-

ically, an arrow would be drawn from the origin to point (-2,3).
Two vectors are equal if they have the same length and direction, despite

differences in their initial and terminal points. Any vector can be redrawn with
its initial point in the origin, making it in standard position. For example,
redrawing vector AB in standard position would look like

A = (−1, 2)

B = (3, 4)

AB = [3− (−1), 4− 2] = [4, 2]

Vectors have different operators. The notion of vector addition is as follows.
If u = [u1, u2] and w = [w1, w2], then

u + w = [u1 + w1, u2 + w2]

Geometrically, vector addition looks like this
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x

y

u

w

u + w

u = [1, 2]

w = [3, 1]

u + w = [1 + 3, 2 + 1] = [4, 3]

The second basic operation is scalar multiplication. It is as follows

cv = c[v1, v2] = [cv1, cv2]

Vector subtraction is adding by the negative of a vector. The negative of
a vector is simply scalar multiplication done by -1.

u− v = u + (−v)

The vectors above were in the set of all ordered doubles of real numbers and
is denoted by R2. We can define Rn as the set of all ordered n-tuples of real
numbers. Thus, a vector in Rn can be written as

[v1, v2, ..., vn] or


v1
v2
...
vn


The following are algebraic properties of all vectors in Rn
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u + v = v + u

(u + v) + w = u + (v + w)

u + 0 = u

u + (−u) = 0

c(u + v) = cu + cv

(c+ d)u = cu + dd

c(du) = (cd)u

1u = u

A vector v is a linear combination of vectors v1,v2, ...,vk if there are
scalars c1, c2, ..., c3 such that v = c1v1 + c2v2+ ... ckvk. The scalars are called
the coefficients of the linear combination. For example,

The vector

 2
−2
−1

 is a linear combination of

 1
0
−1

 ,
 2
−3
1

 , and

 5
−4
0



3

 1
0
−1

+ 2

 2
−3
1

−
 5
−4
0

 =

 2
−2
−1



Another vector operation is known as the dot product. It is essentially the
sum of the products of the corresponding components of two vectors. Note that
the answer is a scalar. The dot product of two vectors u and v is defined by

u · v = u1v1 + u2v2 + ...+ unvn

For example, when u =

 1
2
−3

 and v =

−3
5
2

 then,

u · v = 1 · (−3) + 2 · 5 + (−3) · 2 = 1

The dot product can also be attained by

u · v = ||u||||v|| cos θ

where θ is the angle between the two vectors
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In general, these dot product properties are true for vectors in Rn

u · v = v · u
u · (v + w) = u · v + u ·w

(cu) · v = c(u · v)

u · u ≥ 0 and u · u = 0 if and only if u = 0

The length of a vector v is defined by

||v|| =
√

v · v =
√
v21 + v22 + ...+ v2n

For example,

||[2, 3]|| =
√

22 + 32 =
√

13

A vector of length 1 is known as a unit vector. Given any nonzero vector
v, we can always find a unit vector in the same direction by dividing v by its
own length. This process is known as normalizing a vector.

u =
v

||v||

In Rn, any unit vector which has 1 has its i-th component and 0 in all its
other components are known as standard unit vectors.

The Cauchy-Schwarz Inequality is as follows

|u · v| ≤ ||u||||v||

Proof (without angle):

||u− tv||2 = (u− tv) · (u− tv)

= u · u− u · tv − tu · v + t2v · v
= ||v||2t2 − 2u · v + ||u||2

This is an equation of a non-negative parabola and thus,

the determinant must be non negative as well

D = (2u · v)2 − 4||u||2||v||2 ≤ 0

(u · v)2 ≤ ||u||2||v||2

|u · v| ≤ ||u||||v||
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Proof (with angle):

u · v = ||u||||v|| cos θ

cos θ ≤ 1

|u · v| ≤ ||u||||v||

The Triangle Inequality is as follows

||u · v||2 = (||u||+ ||v||)2

Proof:

||u · v||2 = (u + v) · (u + v)

= u · u + 2(u · v) + v · v
≤ ||u||2 + 2|u · v|+ ||v||2

≤ ||u||2 + 2||u||||v||+ ||v||2

= (||u||+ ||v||)2

The distance between two vectors u and v is defined by

d(u,v) = ||u− v||

Two vectors u and v are orthogonal to each other if u · v = 0. The
Pythagoras’ Theorem can now be seen as ||u + v||2 = ||u||2 + ||v||2 if and
only if u and v are orthogonal.

We can now define the projection of a vector onto another vector. If θ is
the angle between two vectors u and v, then the projection of v onto u is

p = ||p||û
p = ||v|| cos θû

p = ||v||
(

u · v
||u||||v||

)(
1

||u||

)
u

p =
(u · v

u · u

)
u

For example, let u =

4
2
1

 and v =

−2
−1
3

, then the projection of v onto u

is
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u · v = 4(−2) + (2)(−1) + 1(3) = −8− 2 + 3 = −7

u · u = 4(4) + (2)(2) + 1(1) = 16 + 4 + 1 = 21

p =
−1

3

4
2
1



Vectors can be utilized to describe equations of both lines and planes in
different forms. For lines, we can define a specific vector known as the normal
vector. The normal vector is the vector that is perpendicular to any vector x
parallel to the line. Thus, n · x = 0 as they are orthogonal. We can also define
d as the direction vector being a vector parallel to the line. Thus, x is really
just a scalar multiple of d. Thus, x =pd. For situations where the line does
not pass through the origin, we must put the direction vector into standard
position first by subtracting vector p, a point on the line, from vector x. Thus,
n · (x− p) = 0 or n · x = n · p This describes the normal form of the equation
of a line.

n · (x− p) = 0

n · x = n · p

The normal vector can be found from the general form of the equation of
a line.

ax + by = c

n =

[
a
b

]
The vector form of the equation of a line simply stems from the definition

of x. The equations corresponding to the components of the vector form are
called parametric equations.

x = p + td

For example, let l be a line in R3 passing through the point P = (1,2,-1) and

parallel to the vector d =

 5
−1
3

. Then,
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x = p + td

(Vector Form)xy
z

 =

 1
2
−1

+ t

 5
−1
3


(Parametric Form)

x = 1 + 5t

y = 2− t
z = −1 + 3t

Another example. If we let 7x + 3y = 19, then we can take any arbitrary
point P = (1, 4)

n =

[
7
3

]
p =

[
1
4

]
n · x = n · p

(Normal Form)[
7
3

]
·
[
x
y

]
=

[
7
3

]
·
[
1
4

]
The same derivations can be done with the equation of a plane as well. If

we let ax+ by+ cz = d describe the general form of a plane and p be a specific
point on the plane, then the normal form of the equation of a plane is given by

n =

ab
c


n · (x− p) = 0

n · x = n · p
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Because of the second dimension, two direction vectors that are not parallel
to each other are required to describe the vector form of a plane. If we let u
and v be those direction vectors, then the vector form of a plane is given by
the following. Again, the parametric equations are simply the equations of the
corresponding components.

x = p + su + tv

For example, if we have a plane that contains the point P = (5,7,3) and

normal vector n =

1
2
3

, then

n · p = 1(5) + 2(7) + 3(3) = 5 + 14 + 9 = 28

n · x = x+ 2y + 3z = 28

We can find two other points on the plane to get two direction vectors.

Q = (3, 2, 7) and R = (2, 1, 8)

u =

3− 5
2− 7
7− 3

 =

−2
−5
4


v =

2− 5
1− 7
8− 3

 =

−3
−8
5


x = p + su + tvxy
z

 =

5
7
3

+ s

−2
−5
4

+ t

−3
−8
5



There is a simple way to find a normal vector given two nonparallel vectors.
We can define a vector operation called the cross product to do so. Taking
the cross product of two vectors will result in a third vector that is orthogonal
to both original vectors. In chapter 3, we can use the determinant to find the
cross product of two vectors. For now, the magnitude of the cross product can
be found by

|u× v| = uv sin θ

Finally, we can use these concepts to obtain the distance from a point to a
line and the distance from a point to a plane. The distance between a point B
and a line l is simply the perpendicular component of the triangle that the vector
makes with the plane. In other words, it is the vector minus the component
along the line, which is simple the projection of the vector onto the line. Thus,
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d(B, l) = ||v − proj(v)d||

if v =

[
x− xo
y − yo

]
then,

d(B, l) =
|v · n|
||n||

=
a(x− xo) + b(y − yo)√

a2 + b2

=
axo + byo − c√

a2 + b2

The same exercise can be done to find the distance between a point and a
plane.

d(B,P ) = ||v − proj(v)p||

if v =

x− xoy − yo
z − zo

 then,

d(B, l) =
|v · n|
||n||

=
a(x− xo) + b(y − yo) + c(z − zo)√

a2 + b2 + c2

=
axo + byo + czo − d√

a2 + b2 + c2
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10 Chapter 2: Systems of Linear Equations

A linear equation is an equation that can be written in the form

a1x1 + a2x2 + ...anxn = b

where a1, a1, ..., an are coeffecients and the b is a constant term.

A system of linear equations is simply a finite set of linear equations, each
with the same variables. A solution would be a vector that is a solution of each
equation in the system. A system is known as consistent if there exists at least
on solution and inconsistent if it does not. There are three possibilities with
a system of equations with real coefficients. It either has one unique solution,
infinitely many solutions or no solutions. If we have the following system

x− y − z = 2

y + 3z = 5

5z = 10

then we can solve the system by solving for the last equation and working
backwards. This process is known as back substitution.

We can solve systems of equations through matrixes. We can take a system
and turn it into an augmented matrix like so.

x− y − z = 2

3x− 3y + 2z = 16

2x− y + z = 9

1 −1 −1 2
3 −3 2 16
2 −1 1 9


We can solve this system by performing elementary row operations on

the augmented matrix and turn it into row echelon form. Row Echelon form
is simply a form of matrix where any zero rows are completely at the bottom
and any nonzero rows are ordered in such a way that the first nonzero entry
is in a column of its own, creating a sort of staircase pattern with the zeros.
Elementary row operations are simply operations that you can do on the rows
of the matrixes.
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Elementary Row Operations:

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of a row to another row

Taking the previous augmented matrix, we can transform it into row echelon
form.

1 −1 −1 2
3 −3 2 16
2 −1 1 9

 r2−3r1−→

1 −1 −1 2
0 0 5 10
2 −1 1 9


r3−2r1−→

1 −1 −1 2
0 0 5 10
0 1 3 5

 r2<−>r3−→

1 −1 −1 2
0 1 3 5
0 0 5 10


We can now do back substitution to solve the system. This method is known

as Gaussian Elimination. If we find that the row echelon form gives us a sys-
tem that has infinitely many solutions, then we will have to assign parameters to
the free variables and write the leading variables in terms of those variables.
For example,

1 −1 −1 2 1
0 0 1 −1 1
0 0 0 0 0


gives us the equations

x− y − w + 2z = 1

y − z = 1
x
y
w
z

 =


2 + s− t

s
1 + t
t


We number of free variables is simply the number of variables minus the

leading variables. We can also see that the number of leading variables is also
the number of nonzero rows in a row echelon matrix. We can define this number
as the rank of a matrix. Thus, the rank theorem states

number of free variables = n− rank(A)
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There is another form of matrix called the reduced row echelon form,
where a matrix is in row echelon, but every leading entry is 1 and every column
with a leading 1 has 0s everywhere else. We can solve a system by also placing
it in reduced row echelon form and solving for the leading variables in terms of
the free variables. This is known as Gauss-Jordan Elimination. Taking the
previous system,

1 −1 −1 2 1
0 0 1 −1 1
0 0 0 0 0

 r1+r2−→

1 −1 0 1 2
0 0 1 −1 1
0 0 0 0 0



which gives us the equations

x− y + z = 2

w − z = 1

x = 2 + y − z
w = 1 + z

x
y
w
z

 =


2 + s− t

s
1 + t
t


One unique type of system that can always be solved is a system where the

constant term in each equation is 0. This type of system is known as homoge-
neous. It takes the form [A|0]. We can prove the following theorem

If [A|0] is a homogenous system of m linear equations and n variables, where
m < n, then the system has infinitely many solutions

Proof:

rank(A) ≤ m
number of free variables = n− rank(A) ≥ n−m > 0

A general fact about system of linear equations. A system of linear equations
with augmented matrix [A|b] is consistent if and only if b is a linear combination
of the columns of A. If S = v1,v2, ...,vk is a set of vectors in Rn, then the set
of all linear combinations of v1,v2, ...,vk is known as the span of the set. If
span(S) = Rn, then S is called the spanning set for Rn.

For example, if we want to show that span

([
2
−1

]
,

[
1
3

])
= Rn, then we

have to show that any arbitrary vector

[
a
b

]
is a linear combination of the two

vectors.
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x

[
2
−1

]
+ y

[
1
3

]
=

[
a
b

]
The augmented matrix is

[
2 1 a
−1 3 b

]
−→

[
−1 0 (b− 3a)/7
0 1 (a+ 2b)/7

]
Thus, the system is consistent for any choice of a and b.

If we consider the standard unit vectors e1, e2, e3, then for any vector

xy
z


we have

xy
z

 = x

1
0
0

+ y

0
1
0

+ z

0
0
1


Thus, span(e1, e2, e3) = R3

A set of vectors is linearly dependent if there are scalars c1, c2, ...ck at
least one of which is not zero, such that

c1v1 + c2v2 + ...+ ckvk = 0

Let’s assume that we have a linearly independent set S = [u1, u2, ...um]. We
take a subset of this set A = [u1, u2, ...uk], where k < m. Assume that subset
A has a vector that is linearly dependent. This would mean that this vector
un = c1u1 + c2u2 + .... However since vector un is in the set S, then this would
contradict the original claim that S is a linearly independent set. Thus, any
subset of a linearly independent set is also a linearly independent set.

We can use what we have learned so far to prove both the law of sines and
the law of cosines.

Proof of law of cosines:
Let w = u− v and the angle between u and v to be θ.

u
v

w = u − v
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w2 = (u− v)2

= u2 + v2 − 2u · v
= u2 + v2 − 2uv cos θ

Proof of law of sines:

w × v = u− v × v = u× v

w × u = u− v × u = u× v

|w × v| = |w × u| = |u× v|
wu sinα = uu sinβ = uv sin θ

sinβ

v
=

sinα

u
=

sin θ

w
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11 Chapter 3: Matrices

A matrix is a rectangular array of numbers called the entries, or elements
of the matrix. A matrix whose number of rows equal the number of columns
is known as a square matrix and the square matrix whose nondiagonal entries
are all 0 is known as a diagonal matrix.

A + B is simply the sum of both their entries; however, they both must have
the same dimensions. Scalar multiplication of a matrix, cA, acts in the same
way as scalar multiplication of a vector. The negative of a matrix is simply that
matrix scalar multiplied by -1.

If A is an m×n matrix and B is an n× r matrix, then the two matrices can
be multiplied with each other. Notice that the number of columns of A must
equal the number of rows of B. The result is a matrix C with dimension m× r.
Matrix multiplication is as follows;

cij = ai1b1j + ai2b2j + ainbnj

For example, if A =

[
1 3 −1
−2 −2 1

]
and B =

1 4
2 3
3 5

, then

c11 = 1(1) + 3(2) + (−1)3 = 4

c12 = 1(4) + 3(3) + (−1)5 = 8

c21 = −2(1) +−2(2) + (1)3 = −3

c21 = −2(4) +−2(3) + (1)5 = −9

AB =

[
4 8
−3 −9

]
Matrix can have exponentials as well. Ak = AA...A, k times. ArAs = Ar+s

and (Ar)s = Ars

The transpose of an m × n matrix is simply an n ×m matrix AT where

the rows and columns are interchanged. For example, the transpose of

1 4
2 3
3 5


is simply

[
1 2 3
4 3 5

]
. A square matrix A is symmetric is AT = A.

In the same way linear combination is defined with vectors, a linear com-
bination of matrices can be formed as well with c1A1 + c2A2 + c3A3 + .... If

A1 =

[
0 1
−1 0

]
, A2 =

[
1 0
0 1

]
and A3 =

[
1 1
1 1

]
, and matrix B =

[
1 4
2 1

]
, then

we can determine if B is a linear combination of the three matrices like so:
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c1

[
0 1
−1 0

]
+ c2

[
1 0
0 1

]
+ c3

[
1 1
1 1

]
=

[
1 4
2 1

]
c2 + c3 = 1

c1 + c3 = 4

−c1 + c3 = 2

c2 + c3 = 1
0 1 1 1
1 0 1 4
−1 0 1 2
0 1 1 1

→


1 0 0 1
0 1 0 −2
0 0 1 3
0 0 0 0


Thus, c1 = 1, c2 = −2 and c3 = 3 and B is a linear combination of the

matrices.
The notion of linear independence and linear dependence is the same

with matrices as with vectors. We can define the span of a set of matrices to be
the set of all linear combination of the matrices. Taking the previously defined
vectors, we can find its span like so

c1

[
0 1
−1 0

]
+ c2

[
1 0
0 1

]
+ c3

[
1 1
1 1

]
=

[
c2 + c3 c1 + c3
−c1 + c3 c2 + c3

]
[
c2 + c3 c1 + c3
−c1 + c3 c2 + c3

]
=

[
w x
−y z

]


0 1 1 w
1 0 1 x
−1 0 1 y
0 1 1 z

→


1 0 0 x/2− y/2
0 1 0 −x/2− y/2 + w
0 0 1 x/2 + y/2
0 0 0 w − z



Thus, span(A1, A2, A3) =

[
w x
y w

]
since w = z

We also have some properties of Matrix Multiplication

A(BC) = (AB)C

A(B + C) = AB +BC

(A+B)C = AC +BC

k(AB) = (kA)B = A(kB)

ImA =A = AIm

And some properties of the transpose
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(AT )T = A

(A+B)T = AT +BT

(kA)T = k(AT )

(AB)T = BTAT

(Ar)T = (AT )r

If A is an n × n matrix, an inverse of A is an n × n matrix A
′

with the
property that AA

′
= I and A

′
A = I. A is known as invertible if such a matrix

exists.
For any system of linear equations given by Ax = b, the solution is given

by x = A
′
b

Proof:

Ax = b

A
′
Ax = A

′
b

Ix = A
′
b

x = A
′
b

If A =

[
a b
c d

]
, then A is invertible if ad− bc 6= 0, in which case

A−1 =
1

ad− bc

[
d −b
−c a

]
The expression ad− bc is known as the determinant, denoted by detA.
For example, if we have the system of equations x+2y = 3 and 3x+4y = −2,

then
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A =

[
1 2
3 4

]
b =

[
3
−2

]
A−1 =

1

detA

[
4 −2
−3 1

]
=

[
−2 1
3/2 −1/2

]
x =

[
−2 1
3/2 −1/2

] [
3
−2

]
=

[
−8

11/2

]

Here are some properties of Invertible Matrices:

(A−1)−1 = A

(cA)−1 =
1

c
A−1

(AB)−1 = B−1A−1

(AT )−1 = (A−1)T

(An)−1 = (A−1)n

We can use matrices to perform row operations on other matrices. We do
this by multiplying an elementary matrix with the matrix. To obtain this
elementary matrix, we simple perform the intended row operation on an identity

matrix. For example, the matrix E1 =

1 0 0
0 3 0
0 0 1

 multiplied by any matrix is

equivalent to performing 3R2 on that matrix.
We can use the Gauss-Jordan method to compute the inverse. If A is in-

vertible, then computing

[A|I]→ [I|A−1]

gives us the inverse.
We can factor matrices in an assortment of ways. One of these ways is

LU Factorization. We do this by row reducing A to get matrix U. The row
operations we use will have a multiplier. We place the multipliers required to
get the first column of row echelon form under the first 1 of an identity matrix,
and continue on with the second, third, etc. columns, until we get a matrix L.
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For example, if we have matrix A =


3 1 3 −4
6 4 8 −10
3 2 5 −1
−9 5 −2 −4

, then


3 1 3 −4
6 4 8 −10
3 2 5 −1
−9 5 −2 −4

 r2−2r1−−−−→
r3−r1−−−−→

r4−(−3r1)−−−−−−−→


3 1 3 −4
0 2 2 −2
0 1 2 3
0 8 7 −16



r3− 1
2 r1−−−−−→

r4−4r2−−−−→


3 1 3 −4
0 2 2 −2
0 0 1 4
0 0 −1 −8



r4−(−1)r3−−−−−−−→


3 1 3 −4
0 2 2 −2
0 0 1 4
0 0 0 −4

 = U

Our L matrix is our multipliers under the diagonals of the identity matrix

L =


1 0 0 0
2 1 0 0
1 1

2 1 0
−3 4 −1 1


If our row reduction requires switching two rows, then we have to use PTLU

Factorization instead. In PTLU factorization we find row echelon form of A,
and we find our permutation matrix, P, by performing our row operations
on an identity matrix - elementary matrices. We then find the LU factorization
of PA instead, and factor with the transpose of P - PT .

We can define a subspace of Rn as any collection S of vectors in Rn such
that

The zero vector 0 is in S

If u and v are in S, then u + v is in S

if u is in S, then cu is in S

The row space of a matrix A is the subspace row(A) of Rn spanned by
the rows of A. The column space of a matrix A is the subspace col(A) of Rn

spanned by the column of A. For example, if we have matrix A =

1 −1
0 1
3 −3

,
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and we want to determine if matrix b =

1
2
3

 is in the column space of A, we

can say that b is a column space of A if Ax = b is consistent. Thus

1 −1 1
0 1 2
3 −3 3

→
1 0 3

0 1 2
0 0 0


The system is consistent and b is in col(A).
We can determine whether vector w = [4, 5] is in the row space of A through

the same process. We can row reduce

[
A
w

]
to

[
A

′

0

]
by

[
A
w

]
=


1 −1
0 1
3 −3
4 5



→


1 −1
0 1
0 0
0 0


Thus, w is in the subspace row(A).
The null space is the subspace consisting of solutions to the system Ax = 0.

Abasis for a subspace S is a set of vectors in S that both spans S and is linearly
independent. Any two bases for the same subspace have the same number of
vectors, known as the dimension of S. The rank of a matrix A is the dimension
of its row and column spaces, denoted by rank(A). The nullity of a matrix
A is the dimension of its null space and its denoted by nullity(A). Thus, the
rank theorem states that rank(A) + nullity(A) = n if A is an m× n matrix.
This allows us to easily find the nullity of a matrix without solving for Ax = 0.

Proof of Rank Theorem: If A is an m× n matrix, and R is the row echelon
form of the matrix, then R has n rows and r leading variables, indicating n-r
free variables in the solution Ax = 0. rank(A) = r. dim(null(A)) = n − r.
Thus, rank(A) + nullity(A) = r + n− r = n

If we let β = [v1, v2, ...] be a basis for subspace S, then there is one way to
write v as a linear combination of the basis vectors: v = c1v1 + c2v2 + ... The

scalars c1, c2, ... are the coordinates of v with respect to β and [v]β =


c1
c2
c3
...


is the coordinate vectors of v with respect to β.

A transformation from Rn to Rm is called a linear transformation if
T (u + v) = T (u) + T (v) and T (cv) = cT (v)
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For example, the transformation defined by T

[
x
y

]
=

 x
2x− y
3x+ 4y

 is a linear

transformation because

T (u + v) = T (

[
x1 + x2
y1 + y2

]
) =

 x1 + x2
2(x1 + x2)− (y1 + y2)
3(x1 + x2) + 4(y1 + y2)


=

 x1
2x1 − y1
3x1 + 4y1

+

 x2
2x2 − y2
3x2 + 4y2

 = T (u) + T (v)

T (cv) = T (

[
cx
cy

]
) =

 cx
c(2x− y)
c(3x+ 4y)

 = cT (v)

We can take the linear transformation T and place it in matrix form, where
any matrix multiplied by this standard matrix of transformation T will
result in the transformed form of the original matrix. We can also tie two
transformations together with the composition of two transformations where
T is a transformation from Rm to Rn and S is a transformation from Rn to
Rp. To transform from Rm to Rp, we can use S(T (v)). The standard matrix of
transformation between these two matrices is simply [S][T]. S and T are inverse
transformations if S · T and T · S are both equal to the identity matrix.
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12 Chapter 4: Eigenvalues and Eigenvectors

A scalar λ is called an eigenvalue of A if there is a nonzero vector x such
that Ax = λx. The vector x is called an eigenvector. The collection of all
eigenvectors associated with the eigenvalue λ is called the eigenspace of λ and
denoted by Eλ. We see that Ax = λx can be rearranged to (A− λx) = 0. The
set of all eigenvectors corresponding to an eigenvalue is simply the null space
of A − λI. Thus, matrix A has an eigenvalue if the null space of A − λI has a
nontrivial solution. A matrix A also has a nontrivial null space if its determinant
is 0. Thus, we can find the eigenvalues of a matrix by setting det(A− λI) = 0.

For example, if we want to find the eigenvalues of A =

[
3 1
1 3

]
, then

det(A− λI) = 0

det(

[
3− λ 1
1− λ 3

]
) = 0

= (3− λ)(3− λ)− 1

= λ2 − 6λ+ 8

λ = 2, 4

We also can find the equation of a determinant for any square matrix.

detA = a11detA11 − a12detA12 + a13detA13

= Σn1 (−1)i+jaijdetAij

where Aij is the sub matrix of A where the i-th row and the j-th column are
removed.

For a 3× 3 matrix, the determinant is

detA = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
The Laplace Expansion Theorem says that the determinant of an n× n

matrix can be found with

detA = ai1Ci1 + ai2ci2 + ... = Σn1aijCij

or

detA = a1jC1j + a2jc2j + ... = Σn1anjCnj

where the cofactor is Cij = (−1)i+jdetAij
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For example, if A =


2 −3 1 0 4
0 3 2 5 7
0 0 1 6 0
0 0 0 5 2
0 0 0 0 −1

, then its determinant is equal to

detA = 2

∣∣∣∣∣∣∣∣
3 2 5 7
0 1 6 0
0 0 5 2
0 0 0 −1

∣∣∣∣∣∣∣∣
= 2 ∗ 3

∣∣∣∣∣∣
1 6 0
0 5 2
0 0 −1

∣∣∣∣∣∣
= 2 ∗ 3 ∗ 1

∣∣∣∣5 2
0 −1

∣∣∣∣
= 2 ∗ 3 ∗ 1 ∗ (5(−1)− 2 ∗ 0)

= −30

det(AB) = det(A)det(B), det(kA) = kndet(A), det(A−1) = ( 1
det(A) ), and

det(A) = det(AT ) are some properties of determinants. Cramer’s Rule states
that if A is an invertible matrix and b be a vector, then the solution x of Ax = b
is given by

xi =
det(Ai(b))

det(A)

For example if we have the system

x1 + 2x2 = 2

−x1 + 4x2 = 1

where Ai(b) is the matrix A with the i-th column replaced with b. Then,

detA = 6

det(A1(b)) =

∣∣∣∣2 2
1 4

∣∣∣∣ = 6

det(A2(b)) =

∣∣∣∣ 1 2
−1 1

∣∣∣∣ = 3

x1 =
6

6
= 1

x2 =
3

6
=

1

2

If matrices A and B are related to each other with an invertible matrix P
such that P−1AP = B, then we say that A is similar to B. This can be shown
as AP = PB as well. If A and B are similar then the following hold
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detA = detB

A is invertible only if B is invertible

rankA = rankB

A and B have the same characteristic polynomial

A and B have the same eigenvalues

A square matrix A is diagonalizable if there is a diagonal matrix D such
that A is similar to D and P−1AP = D. A must have n linearly indepen-
dent eigenvectors to be diagonalizable. We can find P by putting the linearly
independent eigenvectors in a matrix. Using P and A, we can also solve for D.
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13 Chapter 5: Orthogonality

A set of vectors v1,v2, ...,vk is an orthogonal set if all pairs of vectors in

the set are orthogonal. For example, the set v1,v2,v3 where v1 =

 2
1
−1

,

v2 =

0
1
1

, and v3 =

 1
−1
1

 is an orthogonal set because

v1 · v2 = (2)(0) + (1)(1) + (−1)(1) = 0

v2 · v3 = (0)(1) + (1)(−1) + (1)(1) = 0

v1 · v3 = (2)(1) + (1)(−1) + (−1)(1) = 0

If v1,v2, ...,vk is an orthogonal set of nonzero vectors, then these vectors
must be linearly independent.

Proof:
if c1, c2, ..., ck are scalars such that c1v1+ ...+ckvk = 0 (linearly dependent),

then

(c1v1 + ...+ ckvk) · vi = 0 · vi = 0

c1(v1 · vi) + ...ci(vi · vi) + ...+ ck(vk · vi) = 0

ci(vi · vi) = 0

Since vi 6= 0, ci must be 0. This is true for all values of i. Thus, the set
must be linearly independent since all coefficients are 0.

An orthogonal basis for a subspace W of Rn is a basis of W that is an
orthogonal set. If we let v1,v2, ...,vk be an orthogonal basis for a subspace W
of Rn and w be any vector in W, then

w = c1v1 + ...+ ckvk

and its scalars are given by

ci =
w · vi

vi · vi

Proof:
Since the set is a basis, vector w can be defined by any combination of scalars

w = c1v1 + ...+ ckvk. We can take the dot product with vi to obtain
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w · vi = (c1v1 + ...+ ckvk) · vi

= ci(v1 · vi) + ...+ ci(vi · vi) + ...+ ck(vk · vi)

= ci(vi · vi)

ci =
w · vi

vi · vi

For example, if we let w =

1
2
3

 and the orthogonal basis β = [v1,v2,v3]

(the vectors on the previous page), then

c1 =
2 + 2− 3

4 + 1 + 1
=

1

6

c2 =
0 + 2 + 3

0 + 1 + 1
=

5

2

c3 =
1− 2 + 3

1 + 1 + 1
=

2

3

w =
1

6
v1 +

5

2
v1 +

2

3
v1

We can use the notation below to show the coefficients of w in the orthogonal
basis β.

[w]β =

1/6
5/2
2/3


A set of vectors is an orthonormal set if it is an orthogonal set of unit

vectors. If the set is also a basis of subspace W of Rn, then it is an orthonormal
set. A square matrix Q whose columns form an orthonormal set is called an
orthogonal matrix. The columns of a matrix Q form an orthonormal set if
and only if QTQ = I. An important fact about orthogonal matrixes is that it
implies that Q−1 = QT. Thus, to prove a matrix is orthogonal, we can just
show that this theorem is true. We can also prove the following.

Q−1 is Orthonormal
Proof:

Q−1 = QT

(Q−1)−1 = Q

(QT )T = Q

(Q−1)−1 = (QT )T

(Q−1)−1 = (Q−1)T
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Thus, Q−1 is also orthonormal.

det Q = ±1
Proof:

det(QTQ) = det(I) = 1

det(QT )det(Q) = 1

(det(Q))2 = 1

det(Q) = ±1

Thus, det Q = ±1.

If λ is an eigenvalue of Q, then |λ| = 1. Orthogonal matrixes imply that
||Qx|| = ||x||
Proof:

Qv = λv

||v|| = ||Qv|| = ||λv|| = |λ|||v||
|λ| = 1

Thus, |λ| = 1.

If Q1 and Q2 are both orthogonal, then so is Q1Q2.
Proof:

QT1Q1 = I = QT2Q2

(Q1Q2)T (Q1Q2) = QT1Q
T
2Q1Q2

= QT1Q1Q
T
2Q2

= I

Thus, Q1Q2 is orthogonal.

Previously, one way we described v was as the sum of its perpendicular and
parallel components onto another vector u. We called the parallel component
of v onto u as its projection.

v = proj(v)u + perp(v)u

We can do the same with vectors onto a subspace of Rn. If we let W be a
subspace of Rn and [u1,u2, ...,uk] be an orthogonal basis for W, then for any
vector v in Rn, the orthogonal projection of v onto W is defined as

proj(v)W =

(
u1 · v
u1 · u1

)
u1 + ...+

(
uk · v
uk · uk

)
uk
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Using the concepts above, we can now construct an orthonormal basis for
a subspace W, given its span. Essentially, we just need to take the first vector
in the span and find a second vector that is orthogonal to it by taking just its
perpendicular component. Thus, if the span for W is span(x1,x2), then we can
set the first vector in the orthogonal basis v1 = x1 and find perp(x2)x1 . This
will be the second vector v2 in our orthogonal basis. We can continue for the
rest of span. This process is known as the Gram-Schmidt Process.

If [x1,x2, ...,xk] is a basis for a subspace W of Rn, then

v1 = x1

v2 = x2 −
(

v1 · x2

v1 · v1

)
v1

v3 = x3 −
(

v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

...

For example, if we have the subspace W = span (x1,x2,x3), where x1 =
1
−1
−1
1

, x2 =


2
1
0
1

 and x3 =


2
2
1
2

, then

v1 = x1 =


1
−1
−1
2



v2 = x2 −
(

v1 · x2

v1 · v1

)
v1 =


2
1
0
1

− 1

2


1
−1
−1
2

 =


3/2
3/2
1/2
1/2



We can scale v2 to make our calculations more convenient. v2
′

= 2v2

v3 = x3 −
(

v1 · x3

v1 · v1

)
v1 −

(
v

′

2 · x3

v
′
2 · v2

′

)
v2

′
=


2
2
1
2

− 1

4


1
−1
−1
1

− 3

4


3
3
1
1

 =


−1/2

0
1/2
1


Our orthogonal basis for subspace W is [v1,v2,v3]. We can normalize each

vector to then create an orthonormal basis.
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We can utilize the Gram Schmidt Process to factorize a matrix A. If we
assume that A is an m × n matrix with linearly independent columns, then A
can be factorized into A = QR, where Q is another matrix with orthonormal
columns and R is an upper triangular matrix. This process is known as QR
Factorization.

For example, if we wanted to find the QR Factorization of A =


1 2 2
−1 1 2
−1 0 1
1 1 2


(The vectors from the previous problem), we would first need an orthonormal
basis for col(A), which we found before through the Gram-Schmidt Process.

q1 =


1/2
−1/2
−1/2
1/2

q2 =


3
√

5/10

3
√

5/10√
5/10√
5/10

q3 =


−
√

6/6
0√
6/6√
6/3



Q =


1/2 3

√
5/10 −

√
6/6

−1/2 3
√

5/10 0

−1/2
√

5/10
√

6/6

1/2
√

5/10
√

6/3


QTA = QTQR = IR = R

R = QTA =

 1/2 −1/2 −1/2 1/2

3
√

5/10 3
√

5/10
√

5/10
√

5/10

−
√

6/6 0
√

6/6
√

6/3




1 2 2
−1 1 2
−1 0 1
1 1 2


=

2 1 1/2

0
√

5 3
√

5/2

0 0
√

6/2


Thus,

A =


1/2 3

√
5/10 −

√
6/6

−1/2 3
√

5/10 0

−1/2
√

5/10
√

6/6

1/2
√

5/10
√

6/3


2 1 1/2

0
√

5 3
√

5/2

0 0
√

6/2

 =


1 2 2
−1 1 2
−1 0 1
1 1 2


Orthogonal vectors makes diagonalization of matrices easier. A square ma-

trix is orthogonally diagonalizable if there exists and orthogonal matrix Q
and a diagonal matrix D such that QTAQ = D. Note that since Q−1 = QT ,
the diagonalization Q−1AQ = D is still valid. For example, if we have a matrix

A =

[
2 1
1 2

]
, then
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We begin by finding its eigenvalues

det

([
2− λ 1

1 2− λ

])
= 0

(2− λ)
2 − 1 = 0

λ2 − 4λ+ 3 = 0

(λ− 3)(λ− 1) = 0

λ = 3, 1

Now we find its eigenvectors

[
−1 1
−1 1

] [
v1

v2

]
= 0[

v1

v2

]
=

[
1
1

]
[
1 1
1 1

] [
v1

v2

]
= 0[

v1

v2

]
=

[
−1
1

]
Q must be columns of eigenvectors that are orthonormal to each other, so

we must normalize the eigenvectors to get

q1 =

[√
2/2√
2/2

]
q2 =

[
−
√

2/2√
2/2

]
Q =

[√
2/2 −

√
2/2√

2/2
√

2/2

]
D =

[
3 0
0 1

]
Thus,

D = QTAQ =

[ √
2/2

√
2/2

−
√

2/2
√

2/2

] [
2 1
1 2

] [√
2/2 −

√
2/2√

2/2
√

2/2

]
=

[
3 0
0 1

]
The Spectral Theorem states that a square matrix A is symmetric if and

only if it is orthogonally diagonalizable. We can write A in a different form
called the spectral decomposition, which is given by

A = λq1q1
T + λq2q2

T + ...+ λqnqn
T

If we take the normalized eigenvectors from before, we can find its spectral
decomposition like so.
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q1 =

[√
2/2√
2/2

]
q2 =

[
−
√

2/2√
2/2

]
A = 3

[√
2/2√
2/2

] [√
2/2

√
2/2
]

+ 1

[
−
√

2/2√
2/2

] [
−
√

2/2
√

2/2
]

A = 3

[
1/4 1/4
1/4 1/4

]
+

[
1/4 −1/4
−1/4 1/4

]
If we, for example, want to find a symmetric matrix whose eigenvalues are

λ1 = 3 and λ2 = −2 and has eigenvectors v1 =

[
3
4

]
and v2 =

[
−4
3

]
We have to normalize the eigenvectors before finding the spectral decompo-

sition.

q1 =

[
3/5
4/5

]
q2 =

[
−4/5
3/5

]
A = 3

[
3/5
4/5

] [
3/5 4/5

]
− 2

[
−4/5
3/5

] [
−4/5 3/5

]
A = 3

[
9/25 12/25
12/25 16/25

]
− 2

[
−16/25 −12/25
−12/25 9/25

]
A =

[
−1/5 12/5
12/5 6/5

]
An expression of the form ax2+by2+cz2+dxy+exz+fyz is called quadratic

form. We can express a function with the matrix associated with f, in the
form

f(x) = xTAx

where A =

[
a c/2
c/2 b

]
if the quadratic expression is in form ax2 + by2 + cxy

and A =

 a d/2 e/2
d/2 b f/2
e/2 f/2 c

 if the quadratic expression is in the form ax2 +

by2 + cz2 + dxy + exz + fyz.

For example, the matrix A=

 2 3 3/2
3 −1 0

3/2 0 5

 represents the quadratic form

3x2 − y2 + 5z2 + 6xy + 3xz.
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14 Chapter 6: Vector Spaces

Previously, we saw that we can perform similar operations on both vectors and
matrices. We can generalize the term ”vector” to refer to any abstract set
of examples. Let V be the set on which two operations addition and scalar
multiplication have been defined. If u and v are in V, then the sum is denoted
by u+v and the scalar multiple of u is denoted by cu. If the following axioms
hold for all vectors in V, then V is known as a vector space and its elements
are known as vectors.

u + v is in V

u + v = v + u

(u + v) + w = u + (v + w)

There exists an element 0 V in called a zero vector such that u + 0 = u

For each u in V, there is an element-u in V such that u + (-u) = 0

cu is in V

c(u + v) = cu + dv

(c+ d)u = cu + du

c(du)) = (cd)u

1u = u

For example, let P2 denote the set of all polynomials of degree 2 or less with
real coefficients. if p(x) = a0 + a1x+ a2x

2 and q(x) = b0 + b1x+ b2x
2, then

p(x) + q(x) = a0 + b0 + a1x+ b1x+ a2x
2 + b2x

2 ∈ V
p(x) + q(x) = a0 + a1x+ a2x

2 + b0 + b1x+ b2x
2

= b0 + b1x+ b2x
2 + a0 + a1x+ a2x

2 = q(x) + p(x)

...

cp(x) = ca0 + ca1x+ ca2x
2 ∈ V

...

Axioms 1, 2 and 6 are shown above. The other axioms are easy to see as
well. Thus P2 is a vector space. In general, the set Pn of all polynomials of
degree less than or equal to n is a vector space.

We can also redefine subspaces with this new abstraction. A subset W of a
vector space V is called a subspace if W is itself a vector space with the same
scalars, addition, and scalar multiplication as V.

Spanning sets also carry over to the notion of a general vector space. If S
= [v1,v2, ...,vk] is a set of vectors in a vector space, then the set of all linear
combinations is called the span of the set and is denoted by span(S).
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For example, if p(x) = 1− x+ x2 and q(x) = 2 + x− 3x2 and we wanted to
determine whether r(x) = 1− 4x+ 6x2 was in span(p(x), q(x)), then we simply
need to find scalars c and d such that

c(1− x+ x2) + d(2 + x− 3x2) = 1− 4x+ 6x2

(c+ 2d) + (−c+ d)x+ (c− 3d)x2 = 1− 4x+ 6x2

c = 3d = −1

r(x) ∈ span(p(x), q(x))

The notion of linear dependence also carries over. If a set of vectors in vector
space V is linearly independent, at least one of the vectors can be expressed a
linear combination of the others. If we want to show that the set [1, x, x2, ..., xn]
is linearly independent in Pn, we can assume linear dependence first, like so

p(x) = c0 + c1x+ c2x
2 + ...+ cnx

n = 0

x = 0 c0 = 0

p(x) = c1x+ c2x
2 + ...+ cnx

n = 0

p
′
(x) = c1 + 2c2x+ ...+ ncnx

n−1 = 0

x = 0 c1 = 0

If we repeat the process, we see that all coefficients are 0, proving linear
independence.

A subset β of a vector space V is a basis for V if β spans V and β is linearly
independent. S = [1, x, x2, ..., xn] is called the standard basis for Pn.

For example, if we want to show that β = [1 + x, x + x2, 1 + x2] is a ba-
sis for P2, we must show that the vectors are linearly independent and spans P2.

Linear Independence:

c1(1 + x) + c2(x+ x2) + c3(1 + x2) = 0

(c1 + c3) + (c1 + c2)x+ (c2 + c3)x2 = 0

c1 = 0 c2 = 0 c3 = 0

Span:

c1(1 + x) + c2(x+ x2) + c3(1 + x2) = a+ bx+ cx2

(c1 + c3) + (c1 + c2)x+ (c2 + c3)x2 = a+ bx+ cx2

c1 + c3 = a

c1 + c2 = b

c2 + c3 = c
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The coefficient matrix has rank 3 and, thus, a solution exists, implying β is
a basis for Pn

If β = [v1,v2, ...,vn] is a basis for vector space V, and v is a vector such
that v = c1v1 + c2v2 + ... + ckvk, then c1, c2, ..., ck are the coordinates of v
with respect to β. The following vector is known as the coordinate vector
of v with respect to β.

[v]β =


c1
c2
...
ck


The number of vectors in a basis of vector space V is known as its di-

mension. A vector space with a finite number of vectors in its basis is finite
dimensional. If it is not finite dimensional, then it is infinite dimensional.
Dimensions are denoted by dim V.

Oftentimes, we may find a problem difficult to solve in a current coordinate
system and we may find it easier to switch to a different coordinate system
to make things more convenient. A change of basis allows us to do this. If

we have basis β = [u1,u2] and another basis C = [v1,v2] where u1 =

[
−1
2

]
,

u2 =

[
2
−1

]
, v1 =

[
1
0

]
, v2 =

[
1
1

]
and [x]β =

[
1
3

]
, then

We first have to find the old basis in terms of the new basis

u1 =

[
−1
2

]
= −3

[
1
0

]
+ 2

[
1
1

]
= −3v1 + 2v2

u2 =

[
2
−1

]
= 3

[
1
0

]
−
[
1
1

]
= 3v1 − v2

We can put the coefficients of these vectors in a matrix, known as the change
of basis matrix.

PC−β =

[
−3 3
2 −1

]

Now if we multiply our old coefficient vector with the change of basis matrix,
we will get our new vector in its new basis.

[x]C = PC−β [x]β

[x]C =

[
−3 3
2 −1

] [
1
3

]
=

[
6
−1

]
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A special fact about change of basis matrixes is that (PC−β)−1 = Pβ−C

We can use the Gauss Jordan Method to calculate the change of basis
matrix. If we have a basis β and C, then B is a matrix whose columns are the
vectors of β in terms of any basis for V ε and C is a matrix whose columns are the
vectors of C in terms of any basis for V ε. We can also see that [C|B]− [I|PC−β ]

A linear transformation from one vector space to another is a mapping
T such that for all u and v

T (u + v) = T (u) + T (v)

T (cu) = cT (u)

For example, if T is defined by T (A) = AT

T (A+B) = (A+B)T = AT +BT = T (A) + T (B)

T (cA) = (cA)T = cAT = cT (A)

Thus, T is a linear transformation.

Another example. If we let D be the differential operator and be defined
by D(f) = f

′
, then

D(f + g) = (f + g)
′

= f
′
+ g

′
= D(f) +D(g)

D(cf) = (cf)
′

= cf
′

= cD(f)

Thus, D is a linear transformation as well.

Another example. If we let S be defined by S(f) =
∫ b
a
f(x)dx

S(f + g) =

∫ b

a

(f + g)(x)dx

=

∫ b

a

(f(x) + g(x))dx

=

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

= S(f) + S(g)

S(cf) =

∫ b

a

(cf)(x)dx

=

∫ b

a

c(f(x))dx

= c

∫ b

a

(f(x))dx

= cS(f)
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Thus, S is a linear transformation as well.

Transformations can be composed together as well. If T: U - V and S: V - W
are linear transformations, then the composition of S with T is the mapping
S ◦ T defined by

(S ◦ T )(u) = S(T (u))

We can also extend the notions of null space and column space to the kernel
and range of a linear transformation. If we let T:V - W be a linear transforma-
tion, then the kernel of T denoted by ker(T ) is the set of all vectors in V that
are mapped by T to 0 in W. The range of T, denoted by range(T ) is the set
of all vectors in E that are the images of vectors vectors in V under T.

ker(T ) = [v in V : T (v = 0)]

range(T ) = [T (v) : v in V ]

= [w in W : w = T (v)]

For example, if we have the differential operator D: P3 − P2 defined by
D(p(x)) = p

′
(x) and we want to find the kernel and range, then

D(a+ bx+ cx2 + dx3) = b+ 2cx+ 3dx2

ker(D) = [a+ bx+ cx2 + dx3 : D(a+ bx+ cx2 + dx3) = 0]

ker(D) = [a+ bx+ cx2 + dx3 : b+ 2cx+ 3dx2 = 0]

b+ 2cx+ 3dx2 = 0 b = 2c = 3d = 0

ker(D) = [a : a in Rn]

Thus, the kernel of D is the set of all constant polynomials.
The range of D is simple the subspace P2 because every polynomial in P2 is

the image under D (derivative in this case) of some polynomial in P3.
A linear transformation is said to be one to one if T maps distinct vectors

in V to distinct vectors in W. If range(T) = W, then T is called onto.
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There is a rather faster way to check if a linear transformation is one to one.
A linear transformation is one to one if and only if ker(T ) = 0

From the above definitions of one to one and onto, we can say that a linear
transformation T is invertible if and only if it is one to one and onto. If a
linear transformation is one to one and onto, it is called an isomorphism and
we say that the subspace V is isomorphic to W .

We can show that any linear transformation between finite dimensional vec-
tor spaces can be represented by a matrix transformation. If we let T be a
linear transformation defined by T : V −W and β and C be bases for V and
W respectively, then R(v) = [v]β defines an isomorphism R and S(w) = [w]C
Now that both matrixes are mapped to the set of real numbers, they can be
mapped to each other through a matrix.

[T (v)]C = [T ]C−β [v]C

The matrix is known as the matrix of T with respect to the bases of β
and C. For example, let D: P3−P2 be the differential operator D(p(x)) = p

′
(x).

Let β = [1, x, x2, x3] and C = [1, x, x2] be bases for P3 and P2 respectively.

First, find the images of the basis β under D

[D(1)] = 0 [D(x)] = 1 [D(x2)] = 2x [D(x3)] = 3x2

Now find their coordinate vectors with respect to C.

[D(1)]C =

0
0
0

 [D(x)]C =

1
0
0

 [D(x2)]C =

0
2
0

 [D(x3)]C =

0
0
3


Thus,

A = [D]C−β =

0 1 0 0
0 0 2 0
0 0 0 3


If we want to compute D(5− x+ 2x2), we can do so directly

D(5− x+ 2x2) = −1 + 6x2 =

−1
0
6


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Or we can use our newfound matrix transformation

[5− x+ 2x3]β =


5
−1
0
2


[D(5− x+ 2x3)]C = [D]C−β [5− x+ 2x3]β

=

0 1 0 0
0 0 2 0
0 0 0 3




5
−1
0
2

 =

−1
0
6


We can determine that [S ◦ T ]D−β = [S]D−C [T ]C−β
If we let T be a linear transformation from vector space V to vector space

W, then ([T ]c−β)−1 = [T−1]β−C .

We can define the solution set of a second order differential equation as
a subspace of F . If y

′′
+ay

′
+by = 0 is a second order differential equation and λ1

and λ2 be the roots of the characteristic equation λ2+aλ+b = 0, then [eλ1t, teλ2t]
is a basis for the solution set. Thus, the solutions are of form y = c1e

λ1t+c2te
λ2t

For example, if we want to find all solutions of y
′′ − 2y

′
+ 3y = 0, then

λ2 − 2λ+ 3 = 0

(λ− 3)(λ+ 1) = 0

λ = 3,−1

The solution takes the form

y = c1e
3t + c2e

−t
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15 Chapter 7: Distance and Approximation

Previously, we defined the dot product of two vectors and used the operation
often throughout the chapters. We can extend that operation to vector spaces
other than R2. An inner product is an operation that assigns every pair of
vectors u and v a real number 〈u, v〉, such that the following properties are
true.

〈u,v〉 = 〈v,u〉
〈u,v + w〉 = 〈u,v〉+ 〈u,w〉
〈cu,v〉 = c〈u,v〉
〈u,u〉 ≥ 0

For example, if we define an operation 〈u,v〉 such that 〈u,v〉 = 2u1v1 +
3u2v2, then this operation is an inner product space because

〈u,v〉 = 2u1v1 + 3u2v2 = 2v1u1 + 3v2u2 = 〈u,v〉
〈u,v + w〉 = 2u1(v1 + w1) + 3u2(v2 + w2)

= 2u1v1 + 2u1w1 + 3u2v2 + 3u2w2

= 2u1v1 + 3u2w2 + 2u1w1 + 3u2w2

= 〈u,v〉+ 〈u,w〉
〈cu,v〉 = 2(cu1)v1 + 3(cu2)v2

= c(2u1v1 + 3u2v2)

= c〈u,v〉
〈u,u〉 = 2u1u2 + 3u2u2

= 2u21 + 3u22 ≥ 0

u1 = 0, u2 = 0, 〈u,u〉 = 0

Thus, 〈u,v〉 defines an inner product space.
The length or norm of v is ||v|| =

√
〈v,v〉. The distance between u and

v is d(u,v) = ||u− v||. Vectors u and v are orthogonal if 〈u,v〉 = 0. A vector
of length 1 is called a unit vector.

For example, if 〈f, g〉 =
∫ b
a
f(x)g(x)dx, the inner product is on C[0, 1], and

f(x) = x and g(x) = 3x− 2, then
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||f || =
√
〈f, f〉

=

√∫ 1

0

f2(x)dx

=

√∫ 1

0

x2dx =

√
x3

3

∣∣∣∣1
0

=

√
1

3

d(f, g) = ||f − g|| =
√
〈f − g, f − g〉

=

√∫ 1

0

(2− 2x)2dx

=

√
4x− 4x2 +

4x3

3

∣∣∣∣1
0

=

√
4

3

〈f, g〉 =

∫ 1

0

(3x2 − 2)dx

= x3 − x2
∣∣1
0

= 0

Thus, f and g are orthogonal.
Pythagoras’ Theorem states that if u and v are vectors in an inner prod-

uct space V, then they are orthogonal if and only if ||u + v|| = ||u||2 + ||v||2
The Cauchy Schwarz Inequality now states that |〈u,v〉| ≤ |u||v|.
The Triangle Inequality stats that ||u + v|| ≤ |u|+ |v|.

A norm on a vector space is a mapping that associates with each vector v a
real number ||v||, called the norm of v, such that the following properties are
satisfied.

||v|| ≥ 0 and ||v|| = 0 if and only if v = 0

||cv|| = |c|||v||
||u + v|| ≤ ||u||+ ||v||

A vector space with a norm is called a normed linear space.
The sum norm, or 1-norm, of a vector ||v|| is the sum of the absolute

values of its components. The max norm, or ∞-norm, of a vector ||v|| is the
largest number among the absolute values of its components.

In general, the definition of a norm
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||v||p = (|v1|p + ...+ |vn|p)1/p

is known as the p-norm. A p-norm with p=2 is known as the Euclidean
norm, or 2-norm.

For any norm, we can define a distance function

d(u,v) = ||u− v||

The following properties hold for the distance function

d(u,v) ≤ 0

d(u,v) = d(v,u)

d(u,w) ≤ d(u,v) + d(v,w)

A matrix norm is a mapping that associates a nxn matrix A a real number
||A||, called the norm of A such that the properties are satisfied.

||A|| ≥ 0

||cA|| = |c|||A||
||A+B|| ≤ ||A||+ ||B||
||AB|| ≤ ||A||||B||

The Frobenius norm of a matrix A is the square root of the sum of the
squares of the entries of A. ||A||1 is the largest absolute column sum. ||A||∞ is
the largest absolution row sum.

A matrix A is ill conditioned if small changes in its entries can produced
large changes in the solutions to Ax = b. If small changes to A produces
small changes in the solutions to Ax = b the A is well conditioned. We can
determine the condition number of a matrix as

cond(A) = ||A−1||||A||

If the condition number is large compared to one matrix norm, then it is
large relative to any matrix norm. With the condition number, the following
inequality holds:

||∆x||
||x||

≤ cond(A)
||∆A||
||A||
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The Best Approximation Theorem states that if W is a subspace of an
inner product space and if v is in V, then projw(v) is the best approximation
to v in W.

For example, if u1 =

 1
2
−1

, u2 =

 5
−2
1

 and v =

3
2
5

, then the best

approximation to v in W = span(u1,u2) is

projW (v) =

(
u1 · v
u1 · u1

)
u1 +

(
u2 · v
u2 · u2

)
u2

=
1

3

 1
2
−1

+
8

15

 5
−2
1


=

 3
−2/5
1/5



The distance from v to W is just

||v − projW (v)|| =
√

02 + (
12

5
)2 + (

24

5
)2 =

12
√

5

5

We can now use what we’ve learned to find a curve that best fits a set of
data points. The curve that best fits is simply a curve that minimizes the error
between the line and the data points.
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The error vector is then e =

ε1ε2
ε3

.

To find the line of best fit, we need to make sure ||e|| as small as possible. We
can use the Euclidean norm. The number ||e|| is called the least squares error.

For example, if y = 1 + x and we have data points (1, 2), (2, 2), (3, 4), then

ε = y − (1 + x)

ε1 = 2− (1 + 1) = 0

ε2 = 2− (1 + 2) = −1

ε3 = 4− (1 + 3) = 0

ε21 + ε22 + ε23 = 02 + (−1)2 + 02 = 1

||e|| = 1

The line y = a + bx that minimizes the least squares error, where εi =
yi − (a+ bxi), is known as the least squares approximating line.

If we let A be an m× n matrix and b be in Rm, then Ax = b always as at
least one least squares solution given by

x = (ATA)−1ATb

For example, if we take the data points from before, then

y = a+ bx

A =

1 1
1 2
1 3

 b =

2
2
4


1 1

1 2
1 3

[a
b

]
=

2
2
4


ATA =

[
3 6
6 14

]
ATb =

[
8
18

]
x =

[
2
3
1

]
y =

2

3
+ x
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We can use the same logic to find a parabolic curve of best fit. If we use the
points (−1, 1), (0,−1), (1, 0), (2, 2).

y = a+ bx+ cx2

a− b+ c = 1

a = −1

a+ b+ c = 0

a+ 2b+ 4c = 2

A =


1 −1 1
1 0 0
1 1 1
1 2 4

 b =


1
−1
0
2




1 −1 1
1 0 0
1 1 1
1 2 4


ab
c

 =


1
−1
0
2


x =

− 7
10
− 3

5
1


y = − 7

10
− 3

5
x+ x2

We can also achieve a solution using QR Factorization. If A is an m × n
matrix and A=QR is a QR factorization of A, then the unique least squares
solution x of Ax = b is

x = R−1QTb

We can assign a value to (ATA)−1AT as the pseudoinverse of A, denoted
by A+.

We can now factor every matrix, symmetric or not, square or not, in the
form A = PDQT . We defined SVD factorization as the singular value de-
composition of a matrix. We must begin by. first finding the singular values
of a matrix, which are simply just the square roots of the eigenvalues of ATA,
denoted by σ1, σ2, .... They are conventionally ordered by increasing magnitude.

For example, matrix A =

1 1
1 0
0 1


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ATA =

[
1 1 0
1 0 1

]1 1
1 0
0 1

 =

[
2 1
1 2

]
λ1 = 3

λ2 = 1

σ1 =
√

3

σ2 = 1

We can now factor an m×n matrix A as A = UΣV T , where U is an m×m
matrix, V is an n×n matrix, and Σ is an m×n matrix. The diagonal elements
of Σ will hold the singular values of A. The matrix V is simple the normalized
eigenvectors of ATA. We can compute U with the expression:

un =
1

σ1
Avn

If the vectors of u do not form an orthonormal basis of Rn, then we must
use the Gram-Schmidt Process to orthonormalize them.

For example, if we have the matrix A =

[
1 1 0
0 0 1

]
, then

ATA =

1 1 0
1 1 0
0 0 1


Its eigenvalues are λ1 = 2, λ2 = 1, λ3 = 0 and its eigenvectors are

1
1
0

 ,
0

0
1

 ,
−1

1
0


we normalize them to find

1/
√

2

1/
√

2
0

 ,
0

0
1

 ,
−1/

√
2

1/
√

2
0


Thus, our V and Σ matrices are given by

V =

1/
√

2 0 −1/
√

2

1/
√

2 0 1/
√

2
0 1 0


Σ =

[√
2 0 0

0 1 0

]
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We can compute U like so

u1 =
1√
2

[
1 1 0
0 0 1

]1
√

2

1
√

2
0

 =

[
1
0

]

u2 =
1

1

[
1 1 0
0 0 1

]0
0
1

 =

[
0
1

]

U =

[
1 0
0 1

]
Thus,

A =

[
1 0
0 1

] [√
2 0 0

0 1 0

] 1/
√

2 1/
√

2 0
0 0 1

−1/
√

2 1/
√

2 0


Similar to spectral decomposition, we also have the outer product form

of the SVD, given by:

A = σ1u1vT
1 + ...+ σrurv

T
r

We can also use the pseudoinverse of A to be to be A+ = V Σ+UT , where

Σ+ is simple the matrix

[
D−1 O
O O

]
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